MPRI 2-7-2: Proof Assistants

Matthieu Sozeau

January 15th 2023
Recap

Simple inductive types (datatypes):

Inductive bool := true | false.
Inductive list (A:Type) : Type :=
 nil | cons (hd:A) (tl:list A).
Inductive tree (A:Type) :=
 leaf | node (_:A) (_:nat->tree A).

Smallest type closed by introduction rules (constructors)

Parameters: cons : forall A:Type, A -> list A -> list A
Coq prelude: cons 0 nil : list nat
Recap: Elimination rules

Generated elimination scheme (not primitive):

```plaintext
nat_rect
  : forall P:nat->Type,
    P O -> (forall n, P n -> P (S n)) ->
    forall n, P n.
:= fun P h0 hS => fix F n :
    match n return P n with
    | O => h0
    | S k => hS k (F k)
end
```

Eliminator of recursive type =
deeped dependent pattern-matching + guarded fixpoint
Recap: Logical connectives

Logical connectives and their non-dependent elimination schemes:

Inductive True : Prop := I.
 True_rect : forall P:Type, P \rightarrow True \rightarrow P.

Inductive False : Prop := .
 False_rect : forall P:Type, False \rightarrow P

Inductive and (A B:Prop) : Prop :=
 conj (_,:A) (_,:B).
 and_rect : forall (A B:Prop) (P:Type), (A\rightarrow B\rightarrow P) \rightarrow A/\B \rightarrow P

Inductive or (A B:Prop) : Prop :=
 or_introl (_,:A) | or_intror (_,:B).
 or_ind : forall (A B P:Prop), (A \rightarrow P) \rightarrow (B \rightarrow P) \rightarrow P.
Overview

1. Inductive types
 - Equality
 - Arithmetic
 - Vectors

2. Theory of Inductive types
 - Strict Positivity
 - Dependent pattern-matching
 - Guarded fixpoint
 - The guard condition
Equality as an inductive family

\begin{align*}
\text{Inductive } & \quad \text{eq } (A : \text{Type}) \ (x : A) : A \to \text{Prop} := \\
& \quad \mid \text{eq_refl } : \text{eq } A \ x \ x.
\end{align*}

Elimination:

- \text{eq_rect: } \forall \ A \ x \ (P : A \to \text{Type}), \ P \ x \to \forall \ y, \ x=y \to P \ y

- **Dependent version (generated by Scheme):**

\begin{align*}
\forall \ A \ x \ (P : \forall \ z, \ x=z \to \text{Type}), \ P \ x \ \text{eq_refl} \to \\
\forall \ y \ (e : x=y) \to P \ y \ e
\end{align*}
Dependent elimination needed to prove minimality:

\[
\text{match } n \ \text{return} \ n=0 \ \text{\(\lor\)} \ \exists \ m, \ n=S \ m \ \text{with} \\
\mid \ 0 \ \Rightarrow \ \text{inl} \ \text{eq_refl} : (0=0 \ \text{\(\lor\)} \ \exists \ m, \ 0=S \ m) \\
\mid \ S \ k \ \Rightarrow \ \text{inr} \ (\text{ex_intro} \ k \ \text{eq_refl}) \\
\quad : (S \ k = 0 \ \text{\(\lor\)} \ \exists \ m, \ S \ k = S \ m) \\
\text{end}
\]
Injectivity of constructors:

Definition pred (n:nat) :=
 match n with O => O | S k => k end.

f_equal pred : S n = S m -> n = m

Tactic injection H:
- applies this construction on hyp H: C t₁..tₙ = C u₁..uₙ
- derives proofs of t₁=u₁ .. tₙ=uₙ
Equational theory of \texttt{nat}

Discrimination of constructors:

\begin{verbatim}
Definition P (n:nat) :=
 match n return Prop with O => True | S k => False end.

match (e:0=1) in _=y return P y with
 | eq_refl => I : P 0 (* P 0 = True *)
end : P 1 (* P 1 = False *)
\end{verbatim}

Tactic \texttt{discriminate}:

- solves goals of the form \(C \ t_1 \ldots t_n \ <\!\!\!=\!\!\!= D \ u_1 \ldots u_k \)
- \texttt{discriminate \ H} solves the goal when \(H : C \ t_1 \ldots t_n = D \ u_1 \ldots u_k \)
Vectors (Lists with size)

Inductive type with parameters and index:

\[
\text{Inductive } \text{vect} (A:\text{Type}) : \text{nat} \rightarrow \text{Type} := \\
| \text{niln} : \text{vect} A \ O \\
| \text{consn} : \\
\quad A \rightarrow \forall n:\text{nat}, \text{vect} A \ n \rightarrow \text{vect} A \ (S \ n).
\]

which defines

- a family of types-predicates:
 \[\Gamma \vdash \text{vect} : \text{Type} \rightarrow \text{nat} \rightarrow \text{Type} \]
- a set of introduction rules for the types in this family

\[
\Gamma \vdash A : \text{Type} \\
\overline{\Gamma \vdash \text{niln}_A : \text{vect} A \ O} \\
\Gamma \vdash A : \text{Type} \quad \Gamma \vdash a : A \quad \Gamma \vdash n : \text{nat} \quad \Gamma \vdash l : \text{vect} A \ n \\
\overline{\Gamma \vdash \text{consn}_A a \ n \ l : \text{vect} A \ (S \ n)}
\]
Vectors : elimination

- an elimination rule (pattern-matching operator with a result depending on the object which is eliminated)

\[
\begin{align*}
\Gamma \vdash v : \text{vect } A n & \quad \Gamma, p : \text{nat}, x : \text{vect } A p \vdash C(p, x) : s \\
\Gamma \vdash t_1 : C(O, \text{nil}_A) \\
\Gamma, a : A, n : \text{nat}, l : \text{vect } A n \vdash t_2 : C(S n, \text{cons}_A a n l)
\end{align*}
\]

\[
\Gamma \vdash \left(\text{match } v \text{ as } x \text{ in } \text{vect } _ _ p \text{ return } C(p, x) \text{ with } \begin{array}{l}
niln \Rightarrow t_1 \\
\text{cons} \ a \ n \ l \Rightarrow t_2
\end{array} \right) : C(n, v)
\]

- and the obvious reduction rules (\(\iota\)-reduction)
Well-formed inductive definitions
Constructors of the inductive definition \(I \) have type:

\[
\kappa : \forall (z_1 : C_1) \ldots (z_k : C_k). I \ a_1 \ldots a_n
\]

where \(C_i \) can feature instances of \(I \).
Question: can these instances be arbitrary?
Issues

Constructors of the inductive definition I have type:

$$\kappa : \forall (z_1 : C_1) \ldots (z_k : C_k). I \ a_1 \ldots a_n$$

where C_i can feature instances of I.

Question: can these instances be arbitrary? No!

Example:

```ocaml
Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda
```

```ocaml
Definition app (x y:lambda) := match x with (Lam f) => f y end.
Definition Delta := Lam (fun x => app x x).
Definition Omega := app Delta Delta.
```

and the evaluation of Ω loops.
Constructors of the inductive definition I have type:

$$\kappa : \forall (z_1 : C_1) \ldots (z_k : C_k). I a_1 \ldots a_n$$

where C_i can feature instances of I.

Question: can these instances be arbitrary? No!

Example:

```ocaml
Inductive lambda : Type :=
  | Lam : (lambda -> lambda) -> lambda

Definition app (x y:lambda) :=
  match x with (Lam f) => f y end.
Definition Delta := Lam (fun x => app x x).
Definition Omega := app Delta Delta.
```

and the evaluation of Ω loops.
Necessity of restrictions

Things can even be worse:

```plaintext
Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda
```

Now define:

```plaintext
Fixpoint lambda_to_nat (t : lambda) : nat :=
  match t with Lam f -> S (lambda_to_nat (f t)) end.
```
Necessity of restrictions

Things can even be worse:

\begin{verbatim}
Inductive lambda : Type :=
| Lam : (lambda -> lambda) -> lambda
\end{verbatim}

Now define:

\begin{verbatim}
Fixpoint lambda_to_nat (t : lambda) : nat :=
 match t with Lam f -> S (lambda_to_nat (f t)) end.
\end{verbatim}

What happens with \((\text{lambda_to_nat} (\text{Lam} (\text{fun} \ x \ => \ x)))\)?
The way out: (strict) positivity condition

- An inductive type is defined as the smallest type generated by a set \((\kappa_i)_{1 \leq i \leq n}\) of constructors.

- We can see it as \(\mu X, \oplus_{1 \leq i \leq n} \kappa_i(X)\) (with \(\mu\) a fixpoint operator on types).
 Eg: \(N = \mu X. 1 + X\) and so \(N = 1 + N\)

- The existence of this smallest type can be proved at the impredicative level when the operator \(\lambda X, \oplus_{1 \leq i \leq n} \kappa_i(X)\) is monotonic.
 \(\mu X : \mathbb{P}.(X \to A) \to A\) has a fixpoint...

- In order both to ensure monotonicity and to avoid paradox (predicativity of Type), Coq enforces a strict positivity condition: \(X\) should never appear on the left of an arrow in the type of its constructors.
The way out: (strict) positivity condition

More precisely, if the type (a.k.a arity) of a constructor is:

\[c : C_1 \rightarrow \ldots \rightarrow C_k \rightarrow I \ a_1 \ldots \ a_k \]

it is well-formed when:

- \(I \ a_1 \ldots \ a_k \) is well-formed w.r.t. the uniformity of parametric arguments and typing constraints;
- \(I \) does not appear in any of the \(a_1, \ldots, a_k \);
- Each \(C_i \) should either not refer to \(I \) or be of the form:
 \[C'_1 \rightarrow \ldots \rightarrow C'_m \rightarrow I \ b_1 \ldots \ b_k \]
 well typed and with no other occurrence of \(I \).

And the rule generalizes as such to dependent products (instead of arrow). Said otherwise:

\[c : (\forall \Gamma_i, C_i) \rightarrow I \ a_1 \ldots \ a_k \text{ where } I \not\in FV(\Gamma_i) \text{ and } \]

\[C_i = \begin{cases} I \ b_1 \ldots \ b_k & \text{where } I \not\in FV(b_1 \ldots b_k) \\ T & \text{otherwise} \end{cases} \]
There are more constraints, that will be explained later:

1. **predicativity/impredicativity**
 An inductive is predicative when all constructor argument types live in a sort not bigger than the declared sort for the inductive

2. **restriction on eliminations**
 when the predicativity condition is not satisfied
Girard’s paradox:

- **Type : Type**
- Generalizes to $X : \text{Type}$ with an embedding $\text{Type} \rightarrow X$

Inductive $e \ (A:s1) : s2 := C \ (_:A)$.

- $C : A \rightarrow e(A)$
- pattern-matching: $e(A) \rightarrow A$
- reduction: C and pattern-matching are inverses

If $s_2 : s_1$, the paradox applies...

Conclusion: inductive definitions must be predicative, otherwise eliminations must be restricted (see Paulin’s Habilitation thesis)
Dependent pattern-matching

Inductive \(I \ (p:\text{Par}) : A \rightarrow s := \)
\[
\mid \kappa \ (x_1:C_1) \ldots (x_n:C_n) : I \ p \ u \\
\mid \ldots
\]

match \(t \) as \(h \) in \(I \ _ \ a \) return \(P(a,h) \) with
\[
\mid \kappa \ x_1 \ldots x_n \Rightarrow e \\
\ldots
\]
end

Typing conditions:
- \(\vdash t : I \ q \ b \)
- \(a : A[q/p], h : I \ q \ a \vdash P : s' \)
- \(x_1 : C_1[q/p], \ldots, x_n : C_n[q/p] \vdash e : P(u[q/p], \kappa \ q \ x_1 \ldots x_n) \)

Then the match has type \(P(b, t) \)
Tactics for case analysis

- `case t` is the most primitive. It:
 - generates a (proof) term of the form `match t with ...;`
 - guesses the return type from the goal (under the line);
 - does not introduce/name the arguments of the constructor by default, but there is a syntax for choosing names.

- The `case_eq` variant modifies the guessing of the return type so that equalities are generated.

- The `destruct` variant modifies the guessing of the return type so that it generalizes the hypotheses depending on `t`. The `destruct t eqn:H` variant allows to keep an equality `H` as well between `t` and each pattern.
The fixpoint operator (reduction)

Fixpoint expression with dependent result

\[(\text{fix } f (x : A) : B(x) := t(f, x))\]

- Typing

\[
\begin{align*}
& f : (\forall (x : A), B(x)), x : A \vdash t : B(x) \\
\implies & \vdash (\text{fix } f (x : A) : B(x) := t(f, x)) : \forall (x : A), B(x)
\end{align*}
\]
Fixpoint operator: well-foundness

Requirement of the Calculus of Inductive Constructions:
- the argument of the fixpoint has type an inductive definition
- recursive calls are on arguments which are structurally smaller

Example of recursor on natural numbers

\[
\begin{align*}
\lambda P : \text{nat} \rightarrow s, \\
\lambda H_O : P(O), \\
\lambda H_S : \forall m : \text{nat}, P(m) \rightarrow P(S m), \\
\text{fix } f (n : \text{nat}) : P(n) := \\
\quad \text{match } n \text{ as } y \text{ return } P(y) \text{ with} \\
\quad \quad O \Rightarrow H_O \mid S m \Rightarrow H_S m (f m) \\
\quad \text{end}
\end{align*}
\]

is correct with respect to CCI: recursive call on \(m \) which is structurally smaller than \(n \) in the inductive \(\text{nat} \).
The guard condition

Fixpoint operator : typing rules

\[\Gamma \vdash l : s \quad \Gamma, x : l \vdash C : s' \quad \Gamma, x : l, f : (\forall x : l, C) \vdash t : C \quad t^0_f \triangleleft_l x \]

\[\Gamma \vdash (\text{fix } f (x : l) : C := t) : \forall x : l, C \]

the main rules for \(t^\rho_f \triangleleft_l x \) are:

\[z \in \rho \cup \{x\} \quad (u_i^\rho_f \triangleleft_l x)_{i=1}^n \quad A|_f^\rho \triangleleft_l x \quad (t_i^\rho_f \cup \{x \in \vec{x}_i | x : \forall y : U.1 \vec{u}\} \triangleleft_l x)_i \]

match \(z \ u_1 \ldots u_n \) return \(A \) with \((c_i \vec{x}_i \Rightarrow t_i)_i \) end\(|_f^\rho \triangleleft_l x \)

\[t \neq (z \vec{u}) \text{ for } z \in \rho \cup \{x\} \quad t^\rho_f \triangleleft_l x \quad A|_f^\rho \triangleleft_l x \quad (t_i^\rho_f \triangleleft_l x)_i \]

match \(t \) return \(A \) with \((c_i \vec{x}_i \Rightarrow t_i)_i \) end\(|_f^\rho \triangleleft_l x \)

\[y \in \rho \]

\[f (y \ u_1 \ldots u_n)|_f^\rho \triangleleft_l x \]

\[f \not\in \text{FV}(t) \quad t^\rho_f \triangleleft_l x \]

+ contextual rules ...
It covers simply the schema of primitive recursive definitions and proofs by induction which have recursive calls on all subterms.

\[
\begin{align*}
\lambda P &: \text{list } A \to s, \\
\lambda f_1 &: P \text{ nil,} \\
\lambda f_2 &: \forall (a : A)(l : \text{list } A), P l \to P (\text{cons } a l), \\
\text{fix } Rec (x : \text{list } A) &: P x := \\
&\quad \text{match } x \text{ return } P x \text{ with} \\
&\quad \quad \quad \text{nil } \Rightarrow f_1 | (\text{cons } a l) \Rightarrow f_2 a l (Rec l) \\
\end{align*}
\]

has type

\[
\begin{align*}
\forall P &: \text{list } A \to s, \\
P \text{ nil,} \to \\
(\forall (a : A)(l : \text{list } A), P l \to P (\text{cons } a l)) \to \\
\forall (x : \text{list } A), P x
\end{align*}
\]
Remarks on the criteria

Possibility of recursive call on deep subterms

```coq
Fixpoint mod2 (n:nat) : nat :=
  match n with
    O => O | S O => S O
    | S (S x) => mod2 x
  end
```

Possibility of recursive call on terms build by case analysis if each branch is a strict subterm (actual rule very complex!):

```coq
Definition pred (n:nat) : n<>0->nat:=
  match n return n<>0->nat with
    S p => (fun (h:S p<>0) => p)
    | O => (fun (h:0<>0) =>
              match h (refl_equal 0) return nat with end)
  end

Fixpoint F (n:nat) : C :=
  match iszero n with
    (left H (*H:n=O*)) => ...
    | (right H (*H:n<>0*)) => F (pred n H)
  end
```
Remarks on the criteria

Note: only the recursive arguments with the same type are considered recursive (otherwise paradox related to impredicativity)

\[
\begin{align*}
\text{Definition } & \ ID : \ Prop := \forall (A:Prop), \ A \rightarrow A. \\
\text{Definition } & \ id : \ ID := \text{fun } A \ x \Rightarrow x. \\
\text{Inductive } & \ Singl : \ Prop := c (_:ID). \ (* \ non \ recursive \ *) \\
\text{Fixpoint } & \ f (x : Singl) : \ bool := \\
& \quad \text{match } x \ \text{with} \ (c \ a) \Rightarrow f (a \ Singl \ x) \ \text{end.} \\
& f (c \ id) \xrightarrow{\lambda} f (id \ Singl (c \ id)) \xrightarrow{\beta} f (c \ id)
\end{align*}
\]
Tactics for induction

fix f <n>, where <n> is a numeral is the most primitive. It:

- generates a (proof) term of the form:
 fun g1 g2 => fix f h1 h2 t h3 {struct t} := ?F h1 h2 t

where:

- g1, g2 are the objects in the context (above the line);
- h1, h2, t, h3 are the objects quantified in the goal (under the line);
- ?F can call f (= recursive calls);
- the termination of f is should eventually be guaranteed by structural recursion on t;

Qed checks the well-formedness, which was not guaranteed so far: error messages come late and may be difficult to interpret.
Tactics for induction

`elim t` applies an induction scheme, i.e. a lemma of the form:

\[\forall P : T \rightarrow \text{Type}, \ldots \rightarrow \forall t' : T, P t' \]

- It guesses argument \(P \) from the goal (under the line), abstracting all the occurrences of \(t \).
- It guesses the elimination scheme to be used (\(T_{\text{ind}}, T_{\text{rect}}, \ldots \)) from the sort of the goal and the type of \(t \).
- The `elim t using S` variant allows to provide a custom elimination scheme (or lemma!) \(S \), with the same unification heuristic.

- The `induction t` tactic guesses argument \(P \) taking into account the possible hypotheses depending on \(t \) present in the context (above the line). Plus it can introduce and name things automatically.

Remark: the `rewrite` tactic does a similar guessing job...
Fixpoint expansion

We would expect the usual expansion rule for fixpoints:

\[
\text{(fix } f \ (x:A): B \ x := t(f,x)\text{)e} \\
\rightarrow t(\text{fix } f \ (x:A): B \ x := t(f,x), \ e)
\]
We would expect the usual expansion rule for fixpoints:

\[(\text{fix } f \ (x: A): B \ x := t(f, x)) e\]

\[\rightarrow t(\text{fix } f \ (x: A): B \ x := t(f, x), e)\]

... but this leads to infinite unfolding (SN broken)
Fixpoint expansion

We would expect the usual expansion rule for fixpoints:

\[(\text{fix } f (x:A): B x := t(f,x))e \]
\[\rightarrow t(\text{fix } f (x:A): B x := t(f,x), e)\]

... but this leads to infinite unfolding (SN broken)

Solution: allow this reduction only when \(e\) is a constructor

Beware:

- Guard condition ensures consistency (meaningful definition)
- Expansion restriction imposes a strategy
Advanced features of inductive types

- Prop vs Type
- Impredicative inductive definitions