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1 More on tactics

1.1 Making proof scripts more robust: naming hypotheses
Tactics such as intro or destruct introduce new hypotheses. Coq chooses a name for them, depending on their
type. However, this leads to hypotheses with similar names (H, H0, H1, etc.) and this makes proof scripts more fragile:
suppose we change the script and the hypothesis H0 is not generated; then the one that was called H1 is now called H0;
H2 becomes H1, etc. This requires to edit the name of hypotheses at many irrelevant places.

It is advised to use variants of the above tactics that let the user name the hypotheses:

• intros hyp1 hyp2. introduces two hypotheses with the given names

• destruct hyp as (x,y,z) applies an elimination rule to hyp which shall produce three hypotheses that will be
named x, y and z. It is an error if the number of variables does not correspond to the number of hypotheses
generated. Both conjunction and existential produce two hypotheses.

• destruct hyp as [x1 y2|x2 H2]. is used when the elimination generates several subgoals (for instance, dis-
junction). Each list of names, separated by |, correspond to one subgoal.

The two ways of naming hypotheses generated by destruct can be combined to perform several destruction at once.
An hypothesis H:A\/(exists x, B x /\ C x) can be completely decomposed by destruct H as [a|(x,(b,c))].
Beware that conjunction and disjunction are binary: A/\B/\C is understood as A/\(B/\C), so the associated “naming
pattern” will be of the form (a,(b,c)).

It is possible to let Coq choose the name of some hypothesis using ?. Finally, the pattern _ indicates that the
hypothesis should be discarded.

1.2 Combining tactics: tacticals
The expressivity of the tactic language can be considerably improved by introducing operators that combine atomic
tactics in various ways. These operators are called “tacticals”. Let us give a few tacticals:

• T1 ; T2 applies T1 to the current goal and then T2 to all the subgoals produced by T1. If T1 or one of the
applications of T2 fails, then the whole tactic T1;T2 fails.

• T1 || T2 applies T1 to the current goal. If T1 suceeds (i.e. does not produce an error), then T2 is not used. If T1
fails, then T2 is applied to the current goal (any potential effect of T1 is backtracked).

• try T applies T. If it produces an error, this error is caught and try T does nothing.

• repeat T applies repeatedly T as long as it suceeds.

• do n T is equivalent to T;T;...;T where the tactic is applied n times.

• idtac does nothing.

• fail always fails.
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1.3 Automation
The tactic auto can be used to finish proofs that only require applying a small number of lemmas. The candidates
are taken from a base of hints, which is formed of the hypotheses of the current goal and a set of lemmas declared
by Hint Resolve c. It performs a depth-first-search (auto n performs search up to depth n). At each step it tries to
apply one lemma of the base.

All the parameters of the hints must appear in the conclusion. For instance transitivity of a relation does not satisfy
the criterion since it needs to know the intermediate term. This could be done by unification, but auto is not doing it.
The tactic eauto overcomes this restriction.

In the prelude, the introduction rules of the main logical connectives are declared as hints. The elimination rules
are not, because they would make the proof-search space too big.

Again, the proof scripts of TP1 can be made shorter by using automation.

2 Dependent types
The goal of this section is to get used to the typing rules of dependent products and sums, corresponding to universal
and existential quantifiers.

First, look at the proofs of Socrates’ syllogism, and try to figure out why the term has the expected type.

2.1 Equality
The basic logical rules for equality are:

• An introduction rule: reflexivity eq_refl : forall (A:Type)(x:A), x=x1

• An elimination rule: replacing equals
eq_ind : forall (A:Prop)(x:A)(P:A->Prop), P x -> forall (y:A), x=y -> P y

Using those two constants define (not using the proof mode) terms that are proofs of the following properties of
equality:

• Symmetry: forall (A:Type)(x y:A), x=y -> y=x

• Transitivity: forall (A:Type)(x y z:A), x=y -> y=z -> x=z

• Congruence: forall (A B:Type)(f:A->B)(x y:A), x=y -> f x = f y

What is the problem with expressing the congruence property for dependent functions (i.e. with (A:Type)(B:A->

Type)(f:forall x:A, B x)) ?
Advanced user of Coq can try to overcome this issue by using eq_rect, a generalization of eq_ind to all types

(and not just propositions). Proving that property is for even more advanced users!

3 Universes
Observe the types of the following expressions:

• Prop

• Type (Remember that Coq hides some information)

• Prop->Prop

1Use @eq_refl to desactivate implicit arguments, so eq_refl has the type above. Try Check @eq_refl. The same remark applies to
many constants of the prelude.
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• forall (P:Prop), P

• forall (P:Type), P

Which of those expression uses the impredicativity ?
Give a piece of development showing that Prop is impredicative. That is, it should type-check and should not

type-check when replacing Prop with Type.

4 Impredicative encodings
The sort Prop of Coq is impredicative, which means that forall x:A, P x has type Prop as soon as P x has type
Prop, regardless of the sort of A.

Impredicativity can be used to represent the logical connectives and, in a partial way, datatypes.

4.1 Logical connectives
The conjunction A ∧ B can be encoded by forall Q:Prop, (A->B->Q)->Q. Prove the introduction and elimination
rules of natural deduction.

Do the same for disjunction. Remember the elimination rule of the disjunction. The encoding will capture the fact
that if we have an assumption A∨B and a goal Q, then it suffices to show Q assuming A, and to show Q assuming B.

The existential quantifier is a dependent generalization of the conjunction. Here again, define the connective and
show its introduction and elimination rules.

Equality can be defined using Leibniz’ characterization: two objects are equal if there exists no predicate that
discriminates between them. In intuitionistic logic, it is better to express this positiviely: two objects x and y are equal
if for all predicate that is satisfied by x is satisfied by y.

Γ`refl M : M=M

Γ`x=y Γ`P x Γ`P :A→Prop
Γ`P y

Prove that the equality is reflexive, symmetric, transitive and congruent (that is x = y implies f(x) = f(y) for all
function f ).

4.2 Booleans
The encoding of booleans is forall Q:Prop, Q->Q->Q.

Write the booleans true and false and the the if/then/else. Then write the boolean and function, and prove that it
satisfies the truth table.

Note that we cannot prove that a member of this type is either true or false.

4.3 Natural numbers
The encoding of natural numbers is forall Q:Prop, Q->(Q->Q)->Q. The idea is that n is going to be encoded by
λx.λf.fn(x) (the n-th iteration of f on x).

Write the encoding for 0 and the successor function. Then write the addition and multiplication.
Adapt the negative result of previous section to natural numbers. Which Peano axioms are and are not provable ?

5 Predicative polymorphic encodings
The idea it to define the natural numbers as before, but replacing Prop by Type.

1. Define the type and its constructors (0 and successor)

2. Try to define addition as before. What happens ?
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3. Prove 0 6= 1

4. Is it possible to prove the induction scheme, or a simpler property such as

∀n ∈ N. n = 0 ∨ ∃m.n = S(m) ?

5. Define the subset of N (as a predicate of type N →Prop) of numbers that enjoy the induction scheme.

6. Show that the above subset contains 0 and is closed by successor

7. Prove the Peano axioms on this subset.
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