The Normal Distribution

- the normal distribution’s density is \(\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \)
- setting \(I = \int_{-\infty}^{\infty} e^{-x^2/2} \) dx, we have \(I^2 = \int_{R^2} e^{-\|x\|^2/2} \) by Fubini’s theorem
- using the substitution \(\psi(r, \alpha) = (r \cos \alpha, r \sin \alpha) \), we get

\[
I^2 = \int_0^{2\pi} \int_0^\infty e^{-r^2/2} |\det D\psi(r, \alpha)| dr d\alpha = \int_0^{2\pi} \int_0^\infty e^{-r^2/2} r dr d\alpha = 2\pi
\]

- thus \(I = \sqrt{2\pi} \), and \(\phi \) is indeed the density of a probability measure
- by symmetry of \(\phi \) around 0, we have \(\mathbb{E}X = 0 \)
- for the variance, we have

\[
\text{Var}(X) = \int_{-\infty}^{\infty} x^2 e^{-x^2/2} \, dx = \frac{1}{\sqrt{2\pi}} \left[\int_{-\infty}^{\infty} e^{-x^2/2} \, dx \right] \left[\int_{-\infty}^{\infty} x e^{-x^2/2} \right]_{-\infty}^{\infty} = 1
\]

using integration by parts

- this justifies the notation \(\mathcal{N}(0, 1) \) for the standard normal distribution with mean \(\mu = 0 \) and standard deviation \(\sigma = \sqrt{\text{Var}(X)} = 1 \)
- the general form of the normal distribution \(\mathcal{N}(\mu, \sigma^2) \) with mean \(\mu \) and standard deviation \(\sigma \) has density \(\frac{1}{\sqrt{2\pi\sigma}} e^{-((x-\mu)/\sigma)^2/2} \)
- if \(X \sim \mathcal{N}(\mu, \sigma^2) \), then setting \(Z = (X - \mu)/\sigma \) gives

\[
\mathbb{P}(Z \leq z) = \mathbb{P}(X \leq \sigma z + \mu) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\sigma z + \mu} e^{-((t-\mu)/\sigma)^2/2} \, dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} \, dx
\]

- hence \(Z \sim \mathcal{N}(0, 1) \), which means that \(\mathbb{E}X = \sigma \mathbb{E}Z + \mu = \mu \) and \(\text{Var}(X) = \text{Var}(\sigma Z) = \sigma^2 \text{Var}(Z) = \sigma^2 \)

Chernoff Bound for the Normal Distribution

- the normal distribution is tightly concentrated around its mean, which can be shown by a Chernoff bound
- the MGF of \(X \sim \mathcal{N}(\mu, \sigma^2) \) is:

\[
M_X(t) = \mathbb{E}e^{tX} = e^{t^2\sigma^2/2 + \mu t}
\]
using the MGF, we can show that the sum of two independent normally distributed random variables is itself normally distributed: \(X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2) \) if \(X \sim \mathcal{N}(\mu_1, \sigma_1^2) \) and \(Y \sim \mathcal{N}(\mu_2, \sigma_2^2) \) are independent.

applying the Chernoff bound twice with the optimal parameter \(t = a \) and the union bound once, we get

\[
P\left(\left| \frac{X - \mu}{\sigma} \right| \geq a \right) \leq 2e^{-a^2/2}
\]

if \(X \sim \mathcal{N}(\mu, \sigma^2) \)

Central Limit Theorem

- the central limit theorem states that the averages of i.i.d. random variables are approximately normally distributed as the number of samples grows
- it does not claim that random variables themselves are normally distributed
- let \(X_1, X_2, \ldots \) be i.i.d. with finite expected value \(\mu \) and finite variance \(\sigma^2 \), and set \(\bar{X}_n = \sum_{i=1}^{n} X_i/n \)
- the law of large numbers states that \(\bar{X}_n \to \mu \) almost surely
- the central limit theorem is a more precise version:

\[
\lim_{n \to \infty} P\left(\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \in [a, b] \right) = \Phi(b) - \Phi(a)
\]

for all \(a \leq b \) where \(\Phi \) is the cumulative distribution function of \(\mathcal{N}(0, 1) \)

- Let us check convergence of the MGFs: Set \(Z_i = (X_i - \mu)/\sigma \) and \(Y_n = \sum_{i=1}^{n} Z_i/\sqrt{n} \). We have \(\mathbb{E}e^{tZ_i/\sqrt{n}} = M_Z(t/\sqrt{n}) \) where \(M_Z(t) = M_Z(t) \). It follows that:

\[
M_{Y_n}(t) = \left(M_Z(t/\sqrt{n}) \right)^n
\]

We want to show that \(M_{Y_n}(t) \to e^{t^2/2} \). For that, we set \(L(t) = \log M_Z(t) \) and show, using L'Hôpital's rule, that:

\[
\lim_{n \to \infty} nL(t/\sqrt{n}) = \lim_{n \to \infty} \frac{-L'(t/\sqrt{n})n^{-3/2}t/2}{-n^{-2}} = \lim_{n \to \infty} \frac{L'(t/\sqrt{n})t}{2n^{-1/2}}
\]

\[
= \lim_{n \to \infty} \frac{-L''(t/\sqrt{n})n^{-3/2}t^2/2}{-n^{-3/2}} = \lim_{n \to \infty} \frac{L''(t/\sqrt{n})t^2}{2} = \frac{t^2}{2}
\]

where we used \(L(0) = 0, L'(0) = \mathbb{E}Z_i = 0, \) and \(L''(0) = \mathbb{E}Z_i^2 = 1 \).

Example: Opinion Polls

- assume yes/no opinions that are i.i.d. Bernoulli variables with parameter \(p \)
we are looking for a confidence interval \([\bar{p} - \delta, \bar{p} + \delta]\) with \(P(p \in [\bar{p} - \delta, \bar{p} + \delta]) \geq 1 - \gamma\)

• let’s choose \(\gamma = \delta = 0.05\)

• how many samples do we need?

• often-made but potentially dangerous assumption: \(\bar{X}_n\) is normally distributed with mean \(\mathbb{E}X_i = p\) and variance \(\text{Var}(X_i)/n = p(1 - p)/n\)

• we are then looking for \(n\) such that

\[
P\left(|\bar{X}_n - p| \geq \delta\right) = 2 \left(1 - \Phi\left(\frac{\sqrt{n}\delta}{\sqrt{p(1 - p)}}\right)\right) \leq \gamma = 0.05
\]

• looking up the corresponding argument of \(\Phi\), we have to solve

\[
\frac{\delta \sqrt{n}}{\sqrt{p(1 - p)}} \geq 1.96,
\]

that is,

\[
n \geq 385 \geq \left(20 \cdot 1.96 \cdot \sqrt{p(1 - p)}\right)^2
\]

suffices, where we used \(p(1 - p) \leq 1/4\)

Maximum-Likelihood Estimators

• given a parameterized family of probability distributions and a set of i.i.d. samples, we seek to estimate the parameters

• in case of a discrete random variable \(X\), the maximum-likelihood estimator (MLE) is the parameter \(\theta\) that maximizes

\[
\prod_{i=1}^{n} P_{\theta}(X = x_i)
\]

• in case of a continuous random variable \(X\), it maximizes

\[
\prod_{i=1}^{n} f_{\theta}(x_i)
\]

where \(f_{\theta}\) is the probability density with parameter \(\theta\)

• example: for a Bernoulli random variable, the MLE of the parameter \(p\) is \(p = k/n\) where \(k\) is the number of successes among the \(n\) samples

• example: for a normal distribution, the MLE of the parameters \(\mu\) and \(\sigma\) are \(\mu = \frac{1}{n} \sum_{i=1}^{n} x_i\) and \(\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2\)
every estimator can be itself seen as a random variable when fixing the ground-truth probability distribution

an estimator \(\Theta_n \) that considers \(n \) samples is *unbiased* if \(\mathbb{E}\Theta_n = \theta \) where \(\theta \) is the true value of the estimated parameter

it is *asymptotically unbiased* if \(\mathbb{E}\Theta_n \to \theta \) as \(n \to \infty \)

the sample mean \(M_n = \frac{1}{n} \sum_{i=1}^{n} X_i \) is always an unbiased estimated of the expected value of the \(X_i \)

the sample variance \(S_n^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - M_n)^2 \) is only asymptotically unbiased:
\[
\mathbb{E}S_n^2 = \frac{n-1}{n} \text{Var}(X_i)
\]

Expectation–Maximization Algorithm

we seek to estimate the parameters \(\theta = (\gamma, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2) \) of a mixture of two normal distributions

a sample is chosen according to \(N(\mu_1, \sigma_1^2) \) with probability \(\gamma \), and according to \(N(\mu_2, \sigma_2^2) \) with probability \(1 - \gamma \).

analytically calculating the MLE in infeasible

the Expectation–Maximization (EM) algorithm for this problem iterates the Expectation step followed by the Maximization step:

1. for every sample \(x_i \), compute the conditional probabilities \(p_1(x_i) \) and \(p_2(x_i) \) that it was sampled according to the first or the second normal distribution given, using the current parameter values

2. update the parameters \(\mu_j \) and \(\sigma_j \) that maximize the expected likelihood according to the \(p_j(x_i) \), and \(\gamma \) to the average of the \(p_1(x_i) \)

this algorithm is not guaranteed to convergence to the global maximum, but it will approach a local maximum:

\[
L(x, \gamma^t, \mu_1^t, \mu_2^t, \sigma_1^t, \sigma_2^t) \leq L(x, \gamma^{t+1}, \mu_1^{t+1}, \mu_2^{t+1}, \sigma_1^{t+1}, \sigma_2^{t+1})
\]

\[
L(x, \gamma^{t+1}, \mu_1^{t+1}, \mu_2^{t+1}, \sigma_1^{t+1}, \sigma_2^{t+1}) \leq L(x, \gamma^{t+2}, \mu_1^{t+2}, \mu_2^{t+2}, \sigma_1^{t+2}, \sigma_2^{t+2})
\]