PACS Part 2, Lecture 3

Probabilistic Method

- show existence of objects satisfying property E by showing $\Pr(E) > 0$

First Moment

- show satisfiability of $X \geq \mu$ by showing $\mathbb{E}X \geq \mu$
- uses the inequality $\Pr(X \geq \mathbb{E}X) > 0$
- Example: large cuts

Let $G = (V,E)$ be an undirected graph with $m = |E|$. Then there is a cut of G with value at least $m/2$.

Proof: We divide the vertices of V into two disjoint sets A and B, assigning each vertex to A with probability $1/2$, independently of the other choices. Then, defining $X_e = 1$ if edge $e \in E$ is in the cut defined by A and B, we have

$$\mathbb{E}C(A,B) = \mathbb{E}\sum_{e \in E} X_e = \frac{m}{2}$$

for the expected value of the cut.

- Transforming this into an algorithm for finding a large cut, define $p = \Pr(C(A,B) \geq m/2)$ and note $C(A,B) \leq m$ to get

$$\frac{m}{2} = \mathbb{E}\sum_{e \in E} X_e \leq (1 - p) \left(\frac{m}{2} - 1 \right) + pm$$

which implies $p \geq 1/(1 + m/2)$. This gives a Las Vegas algorithm with an expected number of iterations of $O(m)$.

- We can *derandomize* this algorithm by fixing any enumeration v_1, \ldots, v_n of the vertices. Letting x_i denote the choice of set A or B for vertex v_i, we show that it is possible to achieve

$$\frac{m}{2} \leq \mathbb{E}[C(A,B) \mid x_1, \ldots, x_k] \leq \mathbb{E}[C(A,B) \mid x_1, \ldots, x_{k+1}]$$

which follows from the law of total expectation conditioning on the value of x_{k+1}. The base case is $\mathbb{E}[C(A,B) \mid x_1] = \mathbb{E}C(A,B) = m/2$. To make the choice x_{k+1} that maximizes the conditional expectation, we note that it is equal to the number of edges in the cut between vertices among v_1, \ldots, v_{k+1} plus half the remaining edges. This can be computed in linear time.
Sample and Modify

- sometimes it is not sufficient to make all choices randomly, we are thus led to modifying the random sample to satisfy the specification

- Example: independent sets

If \(G = (V, E) \) is a connected undirected graph with \(n \) vertices and \(m \geq n/2 \) edges, then \(G \) has an independent set of size \(\geq n^2/4m \).

Proof: Let \(d = 2m/n \) be the average degree of vertices. First, select each vertex with probability \(1/d \). Then remove one vertex for each induced edge.

Let \(X \) be the number of selected vertices and \(Y \) the number of induced edges. Then:

\[
\mathbb{E}(X - Y) = \mathbb{E}X - \mathbb{E}Y = \frac{n}{d} - \frac{n}{2d} = \frac{n}{2d} = \frac{n^2}{4m}
\]

Second Moment

- using Chebyshev’s inequality, we will show that \(p = n^{-2/3} \) is a threshold function for the occurrence of cliques of size 4 in Erdős–Rényi graphs

- Let \(C_1, \ldots, C_{\binom{n}{4}} \) be an enumeration of all possible 4-cliques and define the indicator variable \(X_i = 1 \) iff \(C_i \) is a clique.

- Set \(X = \sum_{i=1}^{\binom{n}{4}} X_i \).

- First, let \(p = o(n^{-2/3}) \). Then

\[
\mathbb{P}(X \geq 1) \leq \mathbb{E}X = \binom{n}{4} p^6 = O(n^4 p^6) = o(1)
\]

as \(n \to \infty \).

- Now let \(p = \omega(n^{-2/3}) \). We have

\[
\text{Var}(X) = \sum_i \text{Var}(X_i) + \sum_{i \neq j} \text{Cov}(X_i, X_j) \leq \mathbb{E}X + \text{Cov}(X_i, X_j)
\]

since the \(X_i \) are indicator variables and thus \(\text{Var}(X_i) \leq \mathbb{E}X_i^2 = \mathbb{E}X_i \).

Depending on the number \(|C_i \cap C_j| \) of vertices in the intersection of the potential cliques, we either have \(\text{Cov}(X_i, X_j) = 0 \) (if it is 0 or 1) or a positive term (if it is 2 or 3). Collecting the terms, we have:

\[
\text{Var}(X) \leq \binom{n}{4} p^6 + \binom{n}{6} \left(\frac{6}{2,2,2} \right) p^{11} + \binom{n}{5} \left(\frac{5}{3,1,1} \right) p^9
\]

Compared to \((\mathbb{E}X)^2 = O(n^8 p^{12}) \), we have:

\[
\text{Var}(X) = o(n^8 p^{12}) = o((\mathbb{E}X)^2)
\]
But this implies
\[P(X = 0) \leq P(|X - E_X| \geq E_X) \leq \frac{\text{Var}(X)}{(E_X)^2} = o(1) \]
as \(n \to \infty \).

Lovász Local Lemma

- if we can bound the probabilities of bad events \(E_1, \ldots, E_n \) individually, then we can use the union bound to bound the probability of none of them occurring
- however, if \(\sum_{i=1}^n P(E_i) \geq 1 \), then this doesn’t give a meaningful bound
- if the \(E_i \) are mutually independent, then it suffices to have the very weak bound \(P(E_i) < 1 \) to conclude
 \[P \left(\bigcap_{i=1}^n \bar{E}_i \right) = \prod_{i=1}^n (1 - P(E_i)) > 0 \]
- this can be generalized to the case of limited dependence
- Definition: \(E_i \) is mutually independent of the set \(\{E_j : j \in J\} \) of events if:
 \[\forall I \subseteq J : \quad P \left(E_i \mid \bigcap_{j \in I} E_j \right) = P(E_i) \]
- Definition: Let \(E_1, \ldots, E_n \) be events. A dependency graph of the events is a graph \(G = ([n], E) \) such that \(E_i \) is mutually independent of the set \(\{E_j : (i,j) \notin E\} \).
- Lovász Local Lemma:
 Let \(E_1, \ldots, E_n \) be events and a dependency graph \(G \) such that:
 1. \(P(E_i) \leq p \) for all \(i \)
 2. the maximum vertex degree of \(G \) is at most \(d \)
 3. \(4dp \leq 1 \)
 Then \(P(\bigcap_{i=1}^n \bar{E}_i) > 0 \).
- Example: \(k\)-SAT
 If all variables appear in at most \(T = 2^k/4k \) clauses, then the formula is satisfiable.
 Proof: Assign truth values uniformly i.i.d. Let \(E_i \) be the event that clause \(i \) is not satisfied. Then \(P(E_i) = 2^{-k} \). By the pigeonhole principle, the
maximum degree of G is at most $d \leq kT \leq 2^k/4$. We verify:

$$4dp \leq 4 \frac{2^k}{4} 2^{-k} = 1$$

An application of the local lemma thus concludes the proof.

- **Proof of the local lemma:** We prove by induction on $0 \leq s \leq n - 1$ that

$$\mathbb{P}\left(E_k \mid \bigcap_{j \in S} \overline{E}_j\right) = \mathbb{P}(E_k \mid F_S) \leq 2p$$

for all $S \subseteq [n]$ and $k \in [n] \setminus S$. The lemma then follows: Setting $S_i = [i-1]$, we get

$$\mathbb{P}\left(\bigcap_{i=1}^n \overline{E}_i\right) = \prod_{i=1}^n \mathbb{P}(\overline{E}_i \mid F_{S_i}) \geq \prod_{i=1}^n (1 - 2p) > 0$$

The base case $s = 0$ of the induction is just assumption 1.

For the induction step, define $S_1 = \{j \in S \mid (k, j) \in E\}$ and $S_2 = S \setminus S_1$. If $S_1 = \emptyset$, then the events are mutually exclusive and the inequality follows from assumption 1. If $S_1 \neq \emptyset$, then

$$\mathbb{P}(E_k \mid F_S) = \frac{\mathbb{P}(E_k \cap F_S)}{\mathbb{P}(F_S)} = \frac{\mathbb{P}(E_k \cap F_{S_1} \cap F_{S_2})}{\mathbb{P}(F_{S_1} \mid F_{S_2})}$$

since $F_S = F_{S_1} \cap F_{S_2}$. By the definition of S_2 and assumption 1, we can bound the numerator by $\mathbb{P}(E_k) \leq p$. By applying the induction hypothesis to $\mathbb{P}(E_i \mid F_{S_2})$, we can bound the denominator by

$$\mathbb{P}(F_{S_1} \mid F_{S_2}) \geq 1 - \sum_{i \in S_1} \mathbb{P}(E_i \mid F_{S_2}) \geq 1 - 2pd \geq \frac{1}{2}$$

using assumptions 2 and 3. This concludes the induction step and the proof of the lemma.