In this note, we generalize the polynomial bound on convergence time of averaging algorithms established by Nedic et al. [2] in the case of doubly stochastic matrices. Our contribution consists in observing that the arguments developed in [2] provide an upper bound on the singular values of general (non doubly) stochastic matrices.

Interestingly, our polynomial bound also applies to the fixed-weight algorithm with a time-varying bidirectional topology. It thus unifies the time complexity results in [2], [1] and in [3].

1 Singular values of a stochastic matrix

1.1 Preliminaries

Let \(n \) be a positive integer and let \([n] = \{1, \ldots, n\}\).

Let \(\pi \in \mathbb{R}^n \) be a positive probability vector in \(\mathbb{R}^n \). We define

\[
<x, y>_{\pi} = \sum_{i=1}^{n} \pi_i x_i y_i
\]

that is an inner product on \(\mathbb{R}^n \). For any \(n \times n \) square matrix \(A \), \(A^{\dagger}_\pi \) denotes \(A \)'s adjoint for the inner product \(<\cdot, \cdot>_{\pi} \). We easily check that

\[
A^{\dagger}_\pi = \frac{\pi_j}{\pi_i} A_{ji}.
\]

In the case \(A \) is an ergodic matrix, its Perron vector denoted \(\pi(A) \) is a positive vector. For simplicity, we write \(A^\dagger \) instead of \(A^{\dagger}_{\pi(A)} \). We easily check that if \(A \) is a stochastic matrix, then \(A^\dagger \) is also a stochastic matrix with the same Perron vector, i.e., \(\pi(A^\dagger) = \pi(A) \). Therefore \(A^\dagger A \) is self-adjoint for the inner product \(<\cdot, \cdot>_{\pi(A)} \).

1.2 A formula à la Green

We start with an equality that is a generalization of the Green’s formula.

Proposition 1. If \(\pi \) is a positive probability vector in \(\mathbb{R}^n \) and \(L \) is a square matrix of size \(n \) such that \(1 \in \ker(L) \) and \(L^{\dagger}_{\pi} = L \), then for all vector \(x \in \mathbb{R}^n \), we have

\[
<x, Lx>_{\pi} = -\frac{1}{2} \sum_{(i,j) \in [n]^2} \pi_i L_{i,j} (x_i - x_j)^2.
\]
Proof. First we observe that
\[
\sum_{(i,j) \in [n]^2} \pi_i L_{ij} (x_i - x_j)^2 = \sum_{i \neq j} \pi_i L_{ij} (x_i - x_j)^2
\]
\[
= \sum_{i \neq j} \pi_i L_{ij} x_i^2 + \sum_{i \neq j} \pi_i L_{ij} x_j^2 - 2 \sum_{i \neq j} \pi_i L_{ij} x_i x_j.
\]
Because of the properties of \(L \), the first two terms are both equal to \(- \sum_{i=1}^{n} \pi_i L_{ii} x_i^2 \) and so
\[
\sum_{(i,j) \in [n]^2} \pi_i L_{ij} (x_i - x_j)^2 = -2 \left(\sum_{i=1}^{n} \pi_i L_{ii} x_i^2 + \sum_{i \neq j} \pi_i L_{ij} x_i x_j \right).
\]
Besides, we have
\[
\langle x, Lx \rangle = \sum_{i=1}^{n} \sum_{j=1}^{n} \pi_i L_{ij} x_i x_j = \sum_{i=1}^{n} \pi_i L_{ii} x_i^2 + \sum_{i \neq j} \pi_i L_{ij} x_i x_j
\]
and the lemma then follows. \(\square \)

We immediately derive the following corollary for ergodic stochastic matrices.

Corollary 2. Let \(A \) be an ergodic stochastic matrix of size \(n \) and let \(\pi \) denote its Perron vector. For all vector \(x \in \mathbb{R}^n \),
\[
\langle x, x \rangle_{\pi} - \langle x, A^T A . x \rangle_{\pi} = \frac{1}{2} \sum_{(i,j) \in [n]^2} \pi_i (A^T A)_{i,j} (x_i - x_j)^2.
\]

As an immediate consequence of the above corollary, we obtain that the restriction of the quadratic form
\[
Q_A(x) = \langle x, x - A^T A . x \rangle_{\pi}
\]
to the orthogonal complement of \(\mathbb{R} \mathbf{1} \) in \(\mathbb{R}^n \) is positive definite.

1.3 An upper bound on the singular values of a stochastic matrix

Let \(A \) be an ergodic stochastic matrix of size \(n \) with positive diagonal entries. Since \(A^T A \) is a stochastic matrix, the \(n \) singular values of \(A \) (which are the square roots of \(A^T A \)) in the increasing order satisfy \(0 \leq \sigma_n \leq \ldots \leq \sigma_2 \leq \sigma_1 = 1 \). By the Perron-Frobenius theorem, we have
\[
\sigma_2 < 1.
\]
The aim of the section is to refine the latter inequality.

First we fix some notation: the Perron vector of \(A \) is denoted by \(\pi \) and we let
\[
\mu_A = \min \{ \pi_i A_{ij} \mid A_{ij} > 0 \}.
\]
Let \(\Delta \) be the real vector space generated by \(\mathbf{1} = (1, \ldots, 1)^T \), and \(\Delta^\perp \) be the orthogonal complement of \(\Delta \) in \(\mathbb{R}^n \). We denote by \(\delta \) the semi-norm on \(\mathbb{R}^n \) defined by
\[
\delta(x) = \max_{i=1,\ldots,n} (x_i) - \min_{i=1,\ldots,n} (x_i).
\]
which is a norm on Δ^\perp.

Moreover, let $\{\varepsilon_1, \ldots, \varepsilon_n\}$ be an orthonormal basis in which $A^\dagger A$ is diagonalizable and such that $A^\dagger A\varepsilon_i = \sigma_i^2\varepsilon_i$ and $\varepsilon_1 = 1$. We start by two lemmas which are both slight variations of two results established in [2].

Lemma 3 (Lemma 5 in [2]). Let $N_1 \cup N_2$ a partition of $[n]$ into two disjoint sets. If there exist two indices $i \in N_1$ and $j \in N_2$ such that $A_{ij} > 0$, then

$$\sum_{i \in N_1, j \in N_2} \pi_i (A^\dagger A)_{ij} \geq \mu_A/2.$$

Proof. First we observe that

$$\pi_i (A^\dagger A)_{ij} = \sum_{k \in N} \pi_k A_{ki} A_{kj}.$$

Moreover, since A is a stochastic matrix, for every index i, we have either $\sum_{j \in N_2} A_{ij} \geq 1/2$ or $\sum_{j \in N_1} A_{ij} \geq 1/2$. That leads us to consider the two following cases.

1. There exists an index $i^* \in N_1$ such that $\sum_{j \in N_2} A_{i^*j} \geq 1/2$. Then we have

$$\sum_{i \in N_1, j \in N_2} \pi_i (A^\dagger A)_{ij} \geq \sum_{j \in N_2} \sum_{i \in N_1} \pi_i A_{i^*i} A_{i^*j} \geq \frac{\pi_{i^*} A_{i^*i}}{2}.$$

2. Otherwise for each index $i \in N_1$, we have $\sum_{j \in N_1} A_{ij} \geq 1/2$. It follows that

$$\sum_{i \in N_1, j \in N_2} \pi_i (A^\dagger A)_{ij} \geq \sum_{i \in N_1, j \in N_2} \sum_{k \in N_1} \pi_k A_{ki} A_{kj} = \sum_{k \in N_1, j \in N_2} \pi_k A_{kj} \sum_{i \in N_1} A_{ki}.$$

Hence we have

$$\sum_{i \in N_1, j \in N_2} \pi_i (A^\dagger A)_{ij} \geq \frac{1}{2} \sum_{i \in N_1, j \in N_2} \pi_i A_{ij}.$$

By assumption, there exist $k_1 \in N_1$ and $k_2 \in N_2$ such that $A_{k_1k_2} > 0$ and

$$\sum_{j \in N_1, j \in N_2} \pi_j (A^\dagger A)_{ij} \geq \frac{\pi_{k_1} A_{k_1k_2}}{2}.$$

In both cases, we then derive that $\sum_{i \in N_1, j \in N_2} \pi_i (A^\dagger A)_{ij} \geq \mu_A/2$.

Lemma 4 (Lemma 8 in [2]). For every vector $x \in \mathbb{R}^n$, we have

$$Q_A(x) \geq \frac{\mu_A}{2n} (\delta(x))^2.$$

Proof. Using index permutation, we assume that $x_1 \leq \ldots \leq x_n$. Since for any nonnegative numbers v_1, \ldots, v_k, we have

$$(v_1 + \cdots + v_k)^2 \geq v_1^2 + \cdots + v_k^2,$$

it follows that

$$\sum_{i<j} \pi_i (A^\dagger A)_{ij} (x_i - x_j)^2 \geq \sum_{i<j} \pi_i (A^\dagger A)_{ij} \sum_{d=i}^{j-1} (x_{d+1} - x_d)^2.$$
By reordering the terms in the last sum, we obtain
\[
\sum_{i<j} \pi_i (A^\dagger A)_{ij} (x_i - x_j)^2 \geq \sum_{d=1}^{n-1} \sum_{i=1}^d \sum_{j=d+1}^n \pi_i (A^\dagger A)_{ij} (x_{d+1} - x_d)^2.
\]
Then we use Lemma 3 to show that for each \(d \in \{1, \ldots, n-1\}\), we have
\[
\sum_{i=1}^d \sum_{j=d+1}^n \pi_i (A^\dagger A)_{ij} \geq \mu_A/2.
\]
Therefore
\[
Q_A(x) \geq \frac{\mu_A}{2} \sum_{d=1}^{n-1} (x_{d+1} - x_d)^2.
\]
By Cauchy-Schwarz, we obtain
\[
\sum_{d=1}^{n-1} (x_{d+1} - x_d)^2 \geq \frac{1}{n} (x_n - x_1)^2,
\]
which completes the proof.

Lemma 5. Each vector in the orthonormal basis \(\{\varepsilon_2, \ldots, \varepsilon_n\}\) of \(\Delta^\perp\) has a norm \(\delta\) greater than 1, i.e.,
\[
\forall i \in \{2, \ldots, n\}, \delta(\varepsilon_i) > 1.
\]
Proof. We denote by \(\{e_1, \ldots, e_n\}\) the standard basis and we let
\[
\varepsilon_i = u_{i,1} e_1 + \cdots + u_{i,n} e_n.
\]
By definition of the inner product \(\langle \cdot, \cdot \rangle_\pi\), we have \(\|e_k\|^2_\pi = \pi_k\) and \(\langle e_k, e_\ell \rangle_\pi = 0\) when \(k \neq \ell\). It follows that for every \(i \in \{2, \ldots, n\}\),
\[
\|\varepsilon_i\|^2_\pi = u_{i,1}^2 \pi_1 + \cdots + u_{i,n}^2 \pi_n = 1
\]
and
\[
\langle \varepsilon_i, e_1 \rangle_\pi = \langle \varepsilon_i, 1 \rangle_\pi = u_{i,1} \pi_1 + \cdots + u_{i,n} \pi_n = 0.
\]
From these equalities, we derive that there exist two different indices \(k_i\) and \(\ell_i\) such that
\[
|u_{k_i}| > 1 \quad \text{and} \quad u_{k_i}u_{\ell_i} < 0,
\]
which implies
\[
\delta(\varepsilon_i) > 1.
\]

Proposition 6. If \(A\) is an ergodic stochastic matrix of size \(n\) with positive diagonal entries, then each singular value of \(A\) different from 1 is at most equal to \(\sqrt{1 - \frac{\mu_A}{2n}}\).
Proof. We easily check that
\[Q_A(\varepsilon_2) = 1 - (\sigma_2)^2. \]
Besides combining Lemmas 4 and 5, we obtain
\[Q_A(\varepsilon_2) > \frac{\mu_A}{2n}, \]
which shows the upper bound on \(\sigma_2. \)

1.4 Simpler proof and improvement in the case of a self-adjoint matrix
In the case \(A \) is a self-adjoint ergodic matrix, a simplified version of the above proof, in which Lemmas 4 and 5 are omitted, proves that any \(A \)'s eigenvalue \(\lambda \) different from 1 satisfies
\[\lambda < 1 - \frac{\mu_A}{2D_A}, \tag{1} \]
where \(D_A \) denotes the diameter of the graph associated to \(A \); see Chazelle [1].
Moreover \(\lambda \) lies within at least one Gershgorin disc \(D(A_{ii}, 1 - A_{ii}), \) i.e.,
\[-1 + 2A_{ii} \leq \lambda \leq 1. \]
It then follows that
\[|\lambda| < \max\{1 - \frac{\mu_A}{2D_A}, 1 - 2\alpha_A\}, \]
where \(\alpha_A = \min_{i=1,...,n} (A_{ii}). \) We easily check that \(\mu_A \leq \alpha_A, \) and thus
\[|\lambda| < 1 - \frac{\mu_A}{2D_A}. \]
If \(\lambda_1(A), \ldots, \lambda_n(A) \) denote \(A \)'s eigenvalue ranged in the order of magnitude, then \(\lambda_1(A) = 1, \) and the second Weyl inequality gives
\[\sigma_2(A) \leq \lambda_2(A). \]
The upper bound in Proposition 6 then can be easily improved into
\[\sigma_2(A) \leq 1 - \frac{\mu_A}{2n}. \]

2 A convergence theorem and its applications
We consider a sequence \((A_t)_{t \in \mathbb{N}} \) of \(n \times n \) matrices that satisfies the following assumptions:
A1: Every matrix \(A_t \) is an ergodic stochastic matrix with a positive diagonal.
A2: All the matrices \(A_t \) have the same Perron vector denoted by \(\pi: \)
\[\forall t \in \mathbb{N}, \quad \pi(A_t) = \pi. \]
A3: There exists some positive lower bound \(\alpha \) on the positive entries of the matrices \(A_t:\)
\[\forall t \in \mathbb{N}, \forall (i,j) \in \{1,\ldots,n\}^2, \quad (A_t)_{ij} \in \{0\} \cup [\alpha,1]. \]
Let \(x(0) \in \mathbb{R}^n \), and let \((x(t))_{t \in \mathbb{N}} \) denote the sequence of vectors in \(\mathbb{R}^n \) defined by:

\[
x(t + 1) = A_t x(t).
\]

Theorem 7. Under assumptions A1-3, the sequence \((x(t))_{t \in \mathbb{N}} \) converges to a vector \(x^* \) that is colinear to \(1 \) and

\[
\lim_{t \to +\infty} \| x(t) - x^* \|^{1/t} \leq 1 - \frac{\mu}{4n},
\]

where \(\mu = \inf \{ \pi_i(A_t)_{ij} : (A_t)_{ij} > 0 \} \).

Proof. By (2), we have:

\[
\langle x(t), 1 \rangle_{\pi} = \langle A_{t-1} x(t-1), 1 \rangle_{\pi} = \langle x(t-1), A_{t-1}^\dagger 1 \rangle_{\pi}.
\]

Since \(A_{t-1}^\dagger \) is a stochastic matrix, \(A_{t-1}^\dagger 1 = 1 \) and so

\[
\langle x(t), 1 \rangle_{\pi} = \langle x(t-1), 1 \rangle_{\pi}.
\]

Therefore, the orthogonal projection of \(x(t) \) on \(\Delta \) is constant.

We let \(a = \langle x(0), 1 \rangle_{\pi} \) and

\[
V(t) = \| x(t) - a1 \|^2.
\]

Then

\[
V(t) = \| x(t) \|^2 - 2a \langle x(t), 1 \rangle_{\pi} + a^2 \| 1 \|^2 = \| x(t) \|^2 - a^2,
\]

and

\[
V(t) - V(t + 1) = \langle x(t), x(t) \rangle_{\pi} - \langle A_t x(t), A_t x(t) \rangle_{\pi} = \langle x(t), x(t) - A_t^\dagger A_t x(t) \rangle_{\pi}.
\]

By Corollary 2, it follows that \(V \) is non-increasing; we shall prove that \(V(t) \) tends to 0.

By Proposition 6, \(A_t \) has \(n \) real singular values \(\sigma_1, \ldots, \sigma_n \) that satisfy

\[
0 \leq \sigma_n \leq \ldots \sigma_2 \leq \sqrt{1 - \frac{\mu}{2n}} < \sigma_1 = 1
\]

with \(\mu = \min \{ \pi_i(A_t)_{ij} : (i, j) \in E(G_t) \land t \in \mathbb{N} \} \). Let \(\{ \varepsilon_1, \ldots, \varepsilon_n \} \) be an orthonormal basis for the inner product \(\langle \cdot, \cdot \rangle_{\pi} \) such that for each index \(i \in [n] \),

\[
A_t^\dagger A_t \varepsilon_i = \sigma_i^2 \varepsilon_i.
\]

In particular, \(\varepsilon_1 = 1 \).

Let \(z_1, \ldots, z_n \) the components of \(x(t) \) in this basis\(^1\), namely,

\[
x(t) = z_1 \varepsilon_1 + \cdots + z_n \varepsilon_n.
\]

Hence \(z_1 = \langle x(0), 1 \rangle_{\pi} \) and so

\[
V(t) = z_2^2 + \cdots + z_n^2.
\]

Moreover, we have

\[
A_t^\dagger A_t x(t) = z_1 \varepsilon_1 + z_2 \sigma_2^2 \varepsilon_2 + \cdots + z_n \sigma_n^2 \varepsilon_n.
\]

\(^1\)The real numbers \(z_i, \lambda_i, \) and the vectors \(\varepsilon_i \) all depend on \(t \), but \(t \) is not explicit in our notation as no confusion can arise.
and thus
\[V(t) - V(t + 1) = z_2^2(1 - \sigma_2^2) + \cdots + z_n^2(1 - \sigma_n^2). \]
Hence
\[V(t) - V(t + 1) \geq (1 - \sigma_2^2)V(t). \]
From the upper bound on the second singular value in Proposition 6, it follows that
\[V(t) \leq \left(1 - \frac{\mu}{2n}\right)^t V(0). \]
Hence \(\lim_{t \to \infty} V(t) = 0 \), and so
\[\lim_{t \to \infty} x(t) = a \mathbf{1}. \]
To complete the proof, we use the inequality \((1 - u)^{1/2} \leq 1 - u/2\) which holds for any \(u \in [0,1]\).

We now consider a system with \(n\) agents \(\{1, \ldots, n\}\), a local variable \(x_i\) for each agent \(i\), and an averaging algorithm \(A\) with with non-vanishing and bounded weights, i.e., if \(G_t\) is the communication graph at round \(t\) and \(x_i(t)\) is the value of \(x_i\) at the end of round \(t\):
\[x_i(t) = \sum_{k \in \mathcal{N}_i(G_t)} w_{ik}(t)x_k(t - 1), \quad (3) \]
with a positive lower bound on all the weights \(w_{ik}(t)\).

We consider an execution of \(A\) with an initial state \(x(0) \in \mathbb{R}^n\) and a communication pattern (sequence of communication graphs) \((G_t)_{t \in \mathbb{N}}\). We say that \(A\) achieves asymptotic consensus in this execution if the sequence \(x(t)\) converges to a vector \(x^*\) that is colinear to \(\mathbf{1}\). The convergence rate is then defined as
\[\varrho = \lim_{t \to \infty} \|x(t) - x^*\|^{1/t} \]
where \(\|\cdot\|\) is any norm on \(\mathbb{R}^n\), and the convergence time is
\[T(\varepsilon) = \inf\{\tau \in \mathbb{N} : \forall t \geq \tau, \ V(t) \leq \varepsilon V(0)\}. \]

Let \(A_t\) denote the stochastic matrix associated to the update rule (3) at round \(t\) in this execution. The central assumption is that all the stochastic matrices \(A_t\) share the same Perron vector \(\pi\):
\[\forall t \in \mathbb{N}, \quad \pi(A_t) = \pi. \]
We denote
\[\mu = \inf \{\pi_i(A_t)_{ij} : (A_t)_{ij} > 0\}. \]
From Theorem 7, we immediately deduce the following corollary.

Corollary 8. The algorithm \(A\) achieves asymptotic consensus with convergence rate \(\varrho \leq 1 - \frac{\mu}{4n}\) and convergence time \(T(\varepsilon) \leq \frac{2n}{\mu} \log \left(1/\varepsilon\right)\).

In the reversible case where every matrix \(A_t\) is self-adjoint, the remark in Section 1.4 provides a better upper bound on the second singular value of \(A_t\), and leads to the following improvements on the convergence rate and convergence time.

Corollary 9. In the reversible case, the algorithm \(A\) achieves asymptotic consensus with convergence rate \(\varrho \leq 1 - \frac{\mu}{2n}\) and convergence time \(T(\varepsilon) \leq \frac{n}{\mu} \log \left(1/\varepsilon\right)\).
2.1 Applications and previous results

Corollary 8 has several applications to (1) the EqualNeighbor algorithm with a fixed bidirectional topology, (2) the FixedWeight algorithm with a dynamic bidirectional topology, and finally the Metropolis algorithm with a dynamic bidirectional topology.

2.1.1 EqualNeighbor algorithm with a fixed bidirectional topology

With the EqualNeighbor algorithm, we have

\[w_{ik}(t) = \frac{1}{d_i(t)}, \]

where \(d_i(t) \) is the number of i’s in-neighbors in \(G_t \). If \(G_t \) is bidirectional, then the i-th entry of the Perron vector of \(A_t \) is equal to:

\[\pi_i = \frac{d_i(t)}{d(t)}, \]

where \(d(t) = \sum_{i=1}^{n} d_i(t) \). Therefore \(\mu \geq 1/n^2 \). Moreover, the stochastic matrix \(A \) associated in each round is self-adjoint.

Corollary 9 then applies to any execution of the EqualNeighbor algorithm with a fixed bidirectional topology.

Theorem 10 ([3]). In any execution with a fixed bidirectional connected topology, the EqualNeighbor algorithm achieves asymptotic consensus with convergence rate \(\varrho \leq 1 - \frac{1}{2n^2} \) and convergence time \(T(\varepsilon) \leq n^3 \log \left(\frac{1}{\varepsilon} \right) \).

2.1.2 FixedWeight algorithm with a dynamic bidirectional topology

For each agent \(i \), let \(q_i \) denote an upper bound on the number of i’s in-neighbors in a given communication pattern \((G_t) \). Weights in the FixedWeight algorithm are given by:

\[w_{ik}(t) = \begin{cases}
\frac{1}{q_i} & \text{if } j \in N_i^+(t) \setminus \{i\} \\
1 - (d_i(t) - 1)/q_i & \text{if } j = i \\
0 & \text{otherwise}
\end{cases} \]

We easily check that if \(G_t \) is bidirectional, then the i-th entry of the Perron vector of \(A_t \) is equal to:

\[\pi_i(A_t) = \frac{q_i}{q}, \]

where \(q = \sum_{i=1}^{n} q_i \).

It then follows that in any bidirectional communication pattern, the Perron vector is constant and \(\mu = 1/q \geq 1/n^2 \). Moreover, for every round \(t \), the stochastic matrix \(A_t \) is self-adjoint.

Corollary 9 then applies to any execution of the FixedWeight algorithm with a bidirectional communication pattern.

Theorem 11 ([1]). In any execution with a communication pattern composed of bidirectional connected communication graphs, the FixedWeight algorithm achieves asymptotic consensus with convergence rate \(\varrho \leq 1 - \frac{1}{2n^2} \) and convergence time \(T(\varepsilon) \leq n^3 \log \left(\frac{1}{\varepsilon} \right) \).
2.1.3 Metropolis algorithm with a dynamic bidirectional topology

With the Metropolis algorithm, we have

\[
 w_{ik}(t) = \begin{cases}
 \frac{1}{\max(d_i(t),d_j(t))} & \text{if } j \in N_i^+(t) \setminus \{i\} \\
 1 - \sum_{j \in N_i^+(t) \setminus \{i\}} \frac{1}{\max(d_i(t),d_j(t))} & \text{if } j = i \\
 0 & \text{otherwise .}
 \end{cases}
\]

We easily check that if \(G_t \) is bidirectional, then each matrix \(A_t \) is symmetric, and so doubly stochastic. It follows that the Perron vector of \(A_t \) is collinear to 1, its \(i \)-th entry is equal to:

\[
 \pi_i(A_t) = \frac{1}{n},
\]

and \(\mu \geq 1/n^2 \). Moreover \(A_t \) is self-adjoint for the inner product \((.,.)_\pi\).

Corollary 9 then applies to any execution of the Metropolis algorithm with a bidirectional communication pattern.

Theorem 12 ([2]). In any execution with a communication pattern composed of bidirectional connected communication graphs, the Metropolis algorithm achieves asymptotic consensus with convergence rate \(\varrho \leq 1 - \frac{1}{2n^2} \) and convergence time \(T(\varepsilon) \leq n^3 \log \left(\frac{1}{\varepsilon} \right) \).

References

