Updatable Timed Automata

Object of study. Two slight extensions of timed automata (due to Bouyer et al.) are considered. \(U^+ \) automata are timed automata with the only difference that resets \(x := x + 1 \) are allowed. \(U^- \) automata are timed automata with the only difference that resets \(x := x - 1 \) are allowed.

We are mainly interested in the decidability of the predicate \(\mathcal{R} \), which is defined as follows: given an \(U^+/U^- \mathcal{A} \) and two of its control locations \(p \) and \(q \), the predicate \(\mathcal{R}(\mathcal{A}, p, q) \) is true if and only if there exists a run of \(\mathcal{A} \), starting at \(p \) with all the clocks at 0 and terminating at \(q \) with arbitrary values of clocks.

Question 1: semi-decidability.

- Prove that \(\mathcal{R} \) is semi-decidable (recursively enumerable) for \(U^+ \) and \(U^- \).

Question 2: decidability for \(U^+ \).

- Prove that \(\mathcal{R} \) is decidable for \(U^+ \).

 \textbf{Hint:} You can transform a \(U^+ \) into a normal TA, by replacing (simulating) each incrementation of \(x \) by a gadget TA. The main difficulty is not to destroy other clocks.

 \textbf{Hint:} Alternatively you can use a version of the region graph construction.

- Explain why your decision procedure does not extend to \(U^- \).

Question 3: undecidability for \(U^- \).

We suggest to encode a counter value \(n \) by a clock \(x = n \).

- Give a black-box description (characterize the input-output relations) of gadget \(U^- \) that you need in order to simulate one counter.

- Build these gadgets.

 \textbf{Hint:} If you are unable to, you can still proceed with the subsequent sub-questions.

- Give a black-box description (characterize the input-output relations) of gadget \(U^- \) that you need in order to simulate two counters.

- Build these gadgets.

 \textbf{Hint:} If you are unable to, you can still proceed with the last sub-question.

- Terminate the proof of undecidability of \(\mathcal{R} \) by simulation of a Minsky Machine.