MPRI 2-8-2: Systèmes hybrides
(2ème partie)

Laurent Fribourg
03 février 2021
1 Switched systems
2 Numerical integration
3 Euler approximate solutions
4 Control synthesis
Switched systems

A continuous switched system

\[\dot{x}(t) = f_{\sigma(t)}(x(t)) \]

- state \(x(t) \in \mathbb{R}^n \)
- control rule \(\sigma(\cdot) : \mathbb{R}^+ \rightarrow U \)
- finite set of modes \(U = \{1, \ldots, N\} \)

Focus on time-sampled switched systems:
- given a stepsize (or "sampling period") \(\tau > 0 \), the mode switching occurs at times \(\tau, 2\tau, \ldots \)

The control \(\sigma \) is a piecewise constant function
- with equal steps of length \(\tau \), and height value in \(U \)
Example: Two-room apartment

\[T_1(t + \tau) = f_1(T_1(t), T_2(t), u_1) \]
\[T_2(t + \tau) = f_2(T_1(t), T_2(t), u_2) \]

- Modes: \(\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \); sampling period \(\tau \)

- A pattern \(\pi \) is a finite sequence of modes, e.g. \(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix} \)

- A state dependent control consists in selecting at each \(\tau \) a mode (or a pattern) according to the current value of the state.
Controlled stability

Given a "safety" set S and a "recurrence" set $R \subseteq S$,

select at each $t = \tau, 2\tau, \ldots$, a mode $j \in U$ (according to value $x(t)$) in order to satisfy

(R, S)-stability:

$x(t)$ returns to R
while never leaving S
1 Switched systems

2 Interval-based integration

3 Euler-based integration

4 Application to controlled stability

5 Compositional Euler’s method

6 Final remarks
Interval arithmetic vs. standard arithmetic

- **standard** numerical methods compute approximations to a mathematically correct result (due to finite representation of reals).

- **interval methods** [Moore66] manipulate set-valued real expressions: “interval vectors” or “boxes”

- they give **bounds** that are guaranteed to contain the mathematically correct result, using rules of the form:
 - $[a] + [b] = [a + b, a + b]$
 - $[a] \cdot [b] = [\min\{ab, \overline{ab}, \overline{ab}, \overline{ab}\}, \max\{ab, \overline{ab}, \overline{ab}, \overline{ab}\}]$

- they can account for
 - **rounding** errors
 - **inaccuracies** in measurements of inputs
 - **uncertainty** on parameters, **disturbance**, errors from the model

Interval-based integration

For $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$, we consider the ODE

$$\dot{x}(t) = f(x(t)), \quad x(0) = x_0$$

solution denoted by $x(t; x_0)$ (or simply $x(t)$)

Goal: Given an interval l_0 at $t = t_0$, construct a sequence of intervals:

1. l_1 containing at $t_1 = t_0 + \tau$:
 $$x(t_1; l_0) = \{x(t_1; x_0) \mid x_0 \in l_0\}$$

2. l_2 containing at $t_2 = t_1 + \tau$:
 $$x(t_2; l_1) = \{x(t_2; x_1) \mid x_1 \in l_1\}$$

3. \ldots

\[^2\text{Idem.}\]
Interval-based integration

Given l_j an interval for $t = t_j$, compute a (super)set of solutions l_{j+1} at $t_{j+1} = t_j + \tau$ via a two-step method:

1. **Algorithm I**: compute an a priori enclosure F_j:
 \[x(t; l_j) \subseteq F_j \text{ for all } t \in [t_j, t_{j+1}] \]

2. **Algorithm II**: compute a tighter enclosure l_{j+1}:
 \[x(t; l_j) \subseteq l_{j+1} \subset F_j \text{ at } t = t_{j+1} \]

\[\text{idem.} \]
Algorithm I: a priori enclosure method4

Basic property: If there exists an interval F:

1. $l_0 \subseteq F$, and
2. $l_0 + [0, \tau] \cdot f(F) \subseteq F$

then there exists a unique solution $x(t; x_0)$ for all $t \in [0, \tau]$, $x_0 \in l_0$. Furthermore: $x(t; x_0) \in F$.

Proof based on Banach fixed-point th., and Picard-Lindelöf operator

$$(Tu)(t) = x_0 + \int_0^t f(u(s))ds.$$

The construction of F relies on fixed-point acceleration heuristics ("widening") using adjustment of stepsize τ.

4idem
Algorithm II: tighter enclosure\(^5\)

Using \(F \), compute a tighter enclosure \(l_1 \) of \(x(t; l_0) \) for \(t = \tau \).

Approach: Taylor series + remainder term.

\[
x_1 = x_0 + \sum_{i=1}^{k-1} \tau^i \cdot f^{(i)}(x_0) + \tau^k \cdot f^{(k)}(y), \text{ for some } y \in F.
\]

Hence

\[
l_1 = l_0 + \sum_{i=1}^{k-1} \tau^i \cdot f^{(i)}(l_0) + \tau^k \cdot f^{(k)}(F)
\]

\[\text{NB: with this algo, } |l_1| > |l_0| \]

– even if the true solutions contract!

\[\rightarrow \text{ further refinement needed}\]
INTERVAL-BASED INTEGRATION
Wrapping effect6

A simple rotation:

\[
\dot{x} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x; \quad x_0 \in l_0
\]

The solution is \(x(t) = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} x_0 \), where \(x_0 \in l_0 \)

\(l_0 \) can be viewed as a parallelepiped.

At each step, the parallelepiped is rotated and has to be wrapped by another one.

At \(t = 2\pi \), the blow up factor is by a factor \(e^{2\pi} \approx 535 \), as the stepsize tends to zero.

6idem
(Dis)advantages of interval methods\(^7\)

Advantages over standard numerical methods:

1. ensure a **unique solution** exists
2. provide **guaranteed bounds** on the solution
3. can be efficient for problems with **ranges of parameters**

Disadvantages

1. computation is **time consuming**
2. **harder to implement** than standard numerical methods
3. error bounds may be too **large**

\(^7\) idem
1. Switched systems

2. Interval-based integration

3. Euler-based integration

4. Application to controlled stability

5. Compositional Euler’s method

6. Final remarks
Euler’s approximation $\tilde{x}(t)$ of $x(t)$

$$\tilde{x}(t) = \tilde{x}(t_i) + (t - t_i) \cdot f(\tilde{x}(t_i))$$

Piecewise linear fn.:

at each step, constant derivative of $\tilde{x}(t)$ ($= f(\tilde{x}(t_i))$ deriv. at starting pt)
Classical error bound (using Lipschitz constant L)

- The error at $t = t_0 + k\tau$ is: $\|x(t) - \bar{x}(t)\|$.

If f is Lipschitz cont. ($\|f(y) - f(x)\| \leq L\|y - x\|$), then:

$$\text{error}(t) \leq \frac{\tau M}{2L} (e^{L(t-t_0)} - 1)$$

where L is the Lipschitz constant of f (and M an upper bound on f'').

- In case of "stiff" equations, L can be very big!

Idea: exploit another constant λ that will allow for a sharper estimation of Euler’s error
One-sided Lipschitz (OSL) constant λ

- $\lambda \in \mathbb{R}$ is a constant s.t., for all $x, y \in S$:
 \[\langle f(y) - f(x), y - x \rangle \leq \lambda \|y - x\|^2 \]
 where $\langle \cdot, \cdot \rangle$ denote the scalar product of two vectors of \mathbb{R}^n

- λ can be < 0 (\rightarrow contractivity)

- even in case $\lambda > 0$, in practice: $\lambda \ll L$
 \rightarrow sharper estimation of Euler error

- λ can be computed using constraint optimization algorithms
Hypotheses

(H0) (Lipschitz): for all \(j \in U \), there exists a constant \(L_j > 0 \) such that:

\[
\|f_j(y) - f_j(x)\| \leq L_j \|y - x\| \quad \forall x, y \in S.
\]

(H1) (one-sided Lipschitz): for all \(j \in U \), there exists a constant \(\lambda_j \in \mathbb{R} \) such that

\[
\langle f_j(y) - f_j(x), y - x \rangle \leq \lambda_j \|y - x\|^2 \quad \forall x, y \in T^8,
\]

The constants \(C_j \) for all \(j \in U \) are defined as follows:

\[
C_j = \sup_{x \in S} L_j \|f_j(x)\|.
\]

\(^8 T \) is the one-step expansion of \(S \) under all the modes \(j \) of \(U \)
Computation of the constants

Computation of $L_j, C_j, \lambda_j \ (j \in U)$ realized with constrained optimization algorithms, applied on the following optimization problems:

- **Constant L_j:**
 \[
 L_j = \sup_{x, y \in S, \ x \neq y} \frac{\|f_j(y) - f_j(x)\|}{\|y - x\|}
 \]

- **Constant C_j:**
 \[
 C_j = \sup_{x \in S} L_j \|f_j(x)\|
 \]

- **Constant λ_j:**
 \[
 \lambda_j = \sup_{x, y \in T, \ x \neq y} \frac{\langle f_j(y) - f_j(x), y - x \rangle}{\|y - x\|^2}
 \]
Notations

Let $x_j(t)$ the solution at time t of the system under mode j with (implicit) initial point x^0

$$
\dot{x}(t) = f_j(x(t)), \\
x(0) = x^0.
$$

Given an (approximate) initial point $\tilde{x}^0 \in S$ and a mode $j \in U$, the Euler approximate, denoted by $\tilde{x}_j(t;\tilde{x}^0)$, is defined by:

$$
\tilde{x}_j(t;\tilde{x}^0) = \tilde{x}^0 + t \cdot f_j(\tilde{x}^0), \quad \text{with } t \in [0,\tau]
$$

We are going to determine an upper bound $\delta_j(t)$ to

$$
\text{error}_j(t) \equiv \|x_j(t; x^0) - \tilde{x}_j(t; \tilde{x}^0)\|,
$$

assuming $\text{error}_j(0) \equiv \|x^0 - \tilde{x}^0\| \leq \delta^0$ for some $\delta^0 \in \mathbb{R}_+$.
Basic result: local error $\delta_j(t)$ using λ_j

Theorem

Given a system satisfying (H0-H1), an approximate initial pt \tilde{x}^0, a positive real δ^0 and $j \in U$, we have:

For all initial point $x^0 \in B(\tilde{x}^0, \delta^0)$,

$$x_j(t; x^0) \in B(\tilde{x}_j(t; \tilde{x}^0), \delta_j(t)) \quad \text{for all } t \in [0, \tau].$$

with

- if $\lambda_j < 0$: $\delta_j(t) = \left((\delta^0)^2 e^{\lambda_j t} + \frac{C_j^2}{\lambda_j^2} \left(t^2 + \frac{2t}{\lambda_j} + \frac{2}{\lambda_j^2} \left(1 - e^{\lambda_j t} \right) \right) \right)^{\frac{1}{2}}$

- if $\lambda_j = 0$: $\delta_j(t) = \left((\delta^0)^2 e^t + C_j^2(-t^2 - 2t + 2(e^t - 1)) \right)^{\frac{1}{2}}$

- if $\lambda_j > 0$:

 $$\delta_j(t) = \left((\delta^0)^2 e^{\lambda_j t} + \frac{C_j^2}{3\lambda_j^2} \left(-t^2 - \frac{2t}{3\lambda_j} + \frac{2}{9\lambda_j^2} \left(e^{3\lambda_j t} - 1 \right) \right) \right)^{\frac{1}{2}}$$
Application to one-step controlled safety

Given a ball $B^0 = B(\tilde{x}^0, \delta^0) \subset S$, safely control B^0 during one step, select $j \in U$:

$$x_j(t; B^0) \subseteq S, \quad \forall t \in [0, \tau]$$

It suffices to find $j \in U$: $B^1 = B(\tilde{x}^1, \delta_j(\tau)) \subseteq S$ with $\tilde{x}^1 = \tilde{x}^0 + \tau \cdot f_j(\tilde{x}^0)$ provided δ_j verified to be convex on $[0, \tau]$
Sketch of the proof

Error equation

$$\frac{d}{dt}(x(t) - \tilde{x}(t)) = (f_j(x(t)) - f_j(\tilde{x}^0)),$$

Transformation into a differential inequality

$$\frac{1}{2} \frac{d}{dt} \left(\|x(t) - \tilde{x}(t)\|^2 \right) = \langle f_j(x(t)) - f_j(\tilde{x}^0), x(t) - \tilde{x}(t) \rangle$$
$$\leq \langle f_j(x(t)) - f_j(\tilde{x}(t)), x(t) - \tilde{x}(t) \rangle +$$
$$\|f_j(\tilde{x}(t)) - f_j(\tilde{x}^0)\| \|x(t) - \tilde{x}(t)\|$$
$$\leq \lambda_j \|x(t) - \tilde{x}(t)\|^2 + L_j t \|f_j(\tilde{x}^0)\| \|x(t) - \tilde{x}(t)\|$$

Then integration of the differential inequality, knowing that

$$\|x(t) - \tilde{x}(t)\| \leq \frac{1}{2} \left(\alpha \|x(t) - \tilde{x}(t)\|^2 + \frac{1}{\alpha} \right)$$
for \(\alpha > 0 \)
Application to guaranteed integration

Given a sampled switched system satisfying (H0-H1), consider a point $\bar{x}^0 \in S$, a real $\delta > 0$ and a mode $j \in U$ such that:

1. $B(\bar{x}^0, \delta) \subseteq S$,
2. $B(\tilde{\phi}_j(\tau; \bar{x}^0), \delta_j(\tau)) \subseteq S$, and
3. $\frac{d^2(\delta_j(t))}{dt^2} > 0$ for all $t \in [0, \tau]$.

Then we have, for all $x^0 \in B(\bar{x}^0, \delta)$ and $t \in [0, \tau]$: $\phi_j(t; x^0) \in S$.
Convexity of the trajectories

Example of a DC-DC converter:
The dynamics is given by the equation $\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}$ with $\sigma(t) \in U = \{1, 2\}$. The two modes are given by the matrices:

$$A_1 = \begin{pmatrix} -\frac{r_l}{x_l} & 0 \\ 0 & -\frac{1}{x_c} \frac{1}{r_0+r_c} \end{pmatrix} \quad B_1 = \begin{pmatrix} \frac{v_s}{x_l} \\ 0 \end{pmatrix}$$

$$A_2 = \begin{pmatrix} -\frac{1}{x_l} \left(\frac{r_l + \frac{r_0 \cdot r_c}{r_0+r_c}}{r_0+r_c} \right) & -\frac{1}{x_c} \frac{r_0}{r_0+r_c} \\ \frac{1}{x_c} \frac{r_0}{r_0+r_c} & -\frac{1}{x_c} \frac{r_0}{r_0+r_c} \end{pmatrix} \quad B_2 = \begin{pmatrix} \frac{v_s}{x_l} \\ 0 \end{pmatrix}$$

with $x_c = 70$, $x_l = 3$, $r_c = 0.005$, $r_l = 0.05$, $r_0 = 1$, $v_s = 1$.

λ_1	-0.014215
λ_2	0.142474
C_1	6.7126×10^{-5}
C_2	2.6229×10^{-2}
Remarks on the form of $\delta_j(\cdot)$

ex: DC-DC converter

$\lambda_1 = -0.0142 < 0$

$\lambda_2 = 0.142 > 0$

For mode 1 ($\lambda_1 < 0$): optimal stepsize τ corresponding to minimum of δ_1

For mode 2 ($\lambda_2 > 0$): δ_2 always \uparrow

\rightarrow suggests subsampling of τ for achieving better precision
No wrapping effect in the rotation example

\[\dot{x} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x \]

constants: \(\lambda = 0, \ C = 4.2, \ L = 1 \)
initial error: \(\delta^0 = 0.1 \)
stepsize: \(\tau = 0.005 \)
Recap': Interval-based vs. Euler-based method

- input/output: intervals I_0, I_1 vs ball $B_0 \equiv B(C_0, \delta_0), B_1 \equiv B(C_1, \delta_1)$
- method: I_1 computed from I_0 using intermediate structure F
 vs. B_1 evaluated directly from C_0 and δ_0
Euler-based integration (vs. interval integration)

- **Advantages:**
 1. Computationally **very cheap** (standard arithmetic, no need for computation of f derivatives, δ_j pre-computed)
 2. allows a priori for longer stepsize τ (often)
 3. reduces wrapping effect (sometimes)
 4. well-suited to controlled safety

- **Limits:**
 - less precise than interval-based integration method
 (1st order Taylor method vs. higher order Taylor method)
Outline

1. Switched systems
2. Interval-based integration
3. Euler-based integration
4. Application to controlled stability
One-step controlled safety

Given a ball \(B^0 \equiv B(\bar{x}^0, \delta^0) \subseteq S \), select a mode \(j \):
\[
\chi_j(t; B^0) \subseteq S \quad \text{for all } t \in [0, \tau]
\]

It suffices to find \(j \):
\[
B^1 \equiv B(\bar{x}^1, \delta^1) \subseteq S \quad \text{with} \quad \bar{x}^1 = \bar{x}^0 + \tau \cdot f_j(\bar{x}^0) \quad \text{and} \quad \delta^1 = \delta_j(\tau)
\]
assuming \(\delta_j(\cdot) \) convex
Multi-step controlled safety

Given a ball $B^0 \equiv B(\bar{x}^0, \delta^0) \subset S$, select a pattern π (of length k):

$$x(t; B^0) \in S \quad \text{for all } t \in [0, k\tau]$$

It suffices to find a pattern $\pi \equiv j_1 \cdots j_k$:

$$B^1 \equiv B(\bar{x}^1, \delta^1_{j_1}) \subset S, \quad \ldots, \quad B^k \equiv B(\bar{x}^k, \delta^k_{j_k}) \subset S$$
Controlled (R, S)-stability

1. Find a set of initial balls $B_i^0 \equiv B(\tilde{x}_i^0, \delta^0) \subset S$ covering R.
2. For each B_i^0, select a pattern π_i of the form $j_1 \cdots j_{k_i}$:
 - **safety**: all the balls $B_i^1 \equiv B(\tilde{x}_i^1, \delta^1), \ldots, B_i^{k_i} \equiv B(\tilde{x}_i^{k_i}, \delta^{k_i})$ are $\subseteq S$, and
 - **recurrence**: the last ball $B_i^{k_i}$ is $\subseteq R$.

![Diagram showing controlled (R,S)-stability](image)
Euler-based control vs. interval-based control
Example: Building ventilation
[Meyer, Nazarpour, Girard, Witrant, 2014]

Dynamics of a four-room apartment:

\[
\frac{dT_i}{dt} = \sum_{j \in U^*} a_{ij} (T_j - T_i) + \delta_s b_i (T_{si}^4 - T_i^4) + c_i \max \left(0, \frac{V_i - V_i^*}{V_i - V_i^*} \right) (T_u - T_i).
\]

with \(U^* = \{1, 2, 3, 4, u, o, c\} \)

16 switching modes
(control inputs: \(V_1, V_4 \in \{0V, 3.5V\} \), and \(V_2, V_3 \in \{0V, 3V\} \))
Building ventilation

<table>
<thead>
<tr>
<th></th>
<th>Euler</th>
<th>DynIBEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td>$[20, 22]^4$</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>$[19, 23]^4$</td>
</tr>
<tr>
<td>τ</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Time subsampling</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Complete control</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>$\max_{j=1,\ldots,16} \lambda_j$</td>
<td>-6.30×10^{-3}</td>
<td>4.18×10^{-6}</td>
</tr>
<tr>
<td>$\max_{j=1,\ldots,16} C_j$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of balls/tiles</td>
<td>4096</td>
<td>252</td>
</tr>
<tr>
<td>Pattern length</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CPU time</td>
<td>63 seconds</td>
<td>249 seconds</td>
</tr>
</tbody>
</table>

Control based on **Euler** (left) and **interval** (right).
Building ventilation

Control based on Euler (left) and interval (right).
Two-tank system

The behavior of x_1 is given by $\dot{x}_1 = -x_1 - 2$ when the tank 1 valve is closed, and $\dot{x}_1 = -x_1 + 3$ when it is open. Likewise, x_2 is driven by $\dot{x}_2 = x_1$ when the tank 2 valve is closed and $\dot{x}_2 = x_1 - x_2 - 5$ when it is open.
Two-tank system

<table>
<thead>
<tr>
<th></th>
<th>Euler</th>
<th>DynIBEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>$[-1.5, 2.5]$</td>
<td>$[-0.5, 1.5]$</td>
</tr>
<tr>
<td>S</td>
<td>$[-3, 3]$</td>
<td>$[-3, 3]$</td>
</tr>
<tr>
<td>τ</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Time subsampling</td>
<td>$\tau/10$</td>
<td></td>
</tr>
<tr>
<td>Complete control</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>λ_1</td>
<td>0.20711</td>
<td></td>
</tr>
<tr>
<td>λ_2</td>
<td>-0.50000</td>
<td></td>
</tr>
<tr>
<td>λ_3</td>
<td>0.20711</td>
<td></td>
</tr>
<tr>
<td>λ_4</td>
<td>-0.50000</td>
<td></td>
</tr>
<tr>
<td>C_1</td>
<td>11.662</td>
<td></td>
</tr>
<tr>
<td>C_2</td>
<td>28.917</td>
<td></td>
</tr>
<tr>
<td>C_3</td>
<td>13.416</td>
<td></td>
</tr>
<tr>
<td>C_4</td>
<td>32.804</td>
<td></td>
</tr>
<tr>
<td>Number of balls/tiles</td>
<td>64</td>
<td>10</td>
</tr>
<tr>
<td>Pattern length</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>CPU time</td>
<td>58 seconds</td>
<td>246 seconds</td>
</tr>
</tbody>
</table>
Final remarks

1. Very simple method

2. Very easy to implement (a few hundreds of lines of Octave)

3. Fast, but may lack precision
 w.r.t. sophisticated refinements of interval-based methods

4. Method can be adapted to control reachability (instead of stability)

5. Replacement of forward Euler’s method by better numerical schemes
 (e.g.: backward Euler, Runge-Kutta of order 4)
 does not seem to gain much in the control framework

6. Several examples for which Euler-based control
 - beats state-of-art interval-based control (e.g.: building ventilation)
 - but the converse is also true! (e.g.: DC-DC converter)
APPLICATION TO PARAMETRIZED SYSTEMS WITH LIMIT CYCLES
Euler’s method and error bounds

Let us consider the differential system:

\[\frac{dx(t)}{dt} = f(x(t)), \]

with states \(x(t) \in \mathbb{R}^n \) and \(x_0 \) a given initial condition.

\(\tilde{x}(t; y_0) \) denotes Euler’s approximate value of \(x(t) \) (defined by \(\tilde{x}(t; y_0) = y_0 + t \times f(y_0) \) for \(t \in [0, \tau] \), where \(\tau \) is the integration time-step).
Proposition

[LC DVCF17] Consider the solution $x(t; y_0)$ of $\frac{dx}{dt} = f(x)$ with initial condition y_0 and the approximate Euler solution $\tilde{x}(t; x_0)$ with initial condition x_0. For all $y_0 \in B(x_0, \varepsilon)$, we have:

$$\|x(t; y_0) - \tilde{x}(t; x_0)\| \leq \delta_\varepsilon(t).$$

Definition

$\delta_\varepsilon(t)$ is defined as follows for $t \in [0, \tau]$:

if $\lambda < 0$:

$$
\delta_\varepsilon(t) = \left(\varepsilon^2 e^{\lambda t} + \frac{C^2}{\lambda^2} \left(t^2 + \frac{2t}{\lambda} + \frac{2}{\lambda^2} \left(1 - e^{\lambda t} \right) \right) \right)^{\frac{1}{2}}
$$

if $\lambda = 0$:

$$
\delta_\varepsilon(t) = \left(\varepsilon^2 e^t + C^2 (-t^2 - 2t + 2(e^t - 1)) \right)^{\frac{1}{2}}
$$

if $\lambda > 0$:

$$
\delta_\varepsilon(t) = \left(\varepsilon^2 e^{3\lambda t} + \frac{C^2}{3\lambda^2} \left(-t^2 - \frac{2t}{3\lambda} + \frac{2}{9\lambda^2} \left(e^{3\lambda t} - 1 \right) \right) \right)^{\frac{1}{2}}
$$

where C and λ are real constants specific to function f, defined as follows:

$$
C = \sup_{y \in S} \|f(y)\|,
$$
Definition

L denotes the Lipschitz constant for f, and λ is the “one-sided Lipschitz constant” (or “logarithmic Lipschitz constant” [AS14]) associated to f, i.e., the minimal constant such that, for all $y_1, y_2 \in S$:

$$\langle f(y_1) - f(y_2), y_1 - y_2 \rangle \leq \lambda \|y_1 - y_2\|^2, \quad (H0)$$

where $\langle \cdot, \cdot \rangle$ denotes the scalar product of two vectors of S.

The constant λ can be computed using a nonlinear optimization solver (e.g., CPLEX [Cpl09]) or using the Jacobian matrix of f.

Systems with bounded uncertainty

A differential system with bounded uncertainty is of the form

\[
\frac{dx(t)}{dt} = f(x(t), w(t)),
\]

with \(t \in \mathbb{R}_0^+ \), states \(x(t) \in \mathbb{R}^n \), and uncertainty \(w(t) \in \mathcal{W} \subset \mathbb{R}^n \) (\(\mathcal{W} \) is compact, i.e., closed and bounded).

- We suppose (see [LCADSC+17]) that there exist constants \(\lambda \in \mathbb{R} \) and \(\gamma \in \mathbb{R}_{\geq 0} \) such that, for all \(y_1, y_2 \in S \) and \(w_1, w_2 \in \mathcal{W} \):

\[
\langle f(y_1, w_1) - f(y_2, w_2), y_1 - y_2 \rangle \leq \lambda \| y_1 - y_2 \|^2 + \gamma \| y_1 - y_2 \| \| w_1 - w_2 \| \quad (H1).
\]

- Instead of computing \(\lambda \) and \(\gamma \) globally for \(S \), it is advantageous to compute them locally depending on the subregion of \(S \) occupied by the system state during a considered interval of time.

Proposition

\(\delta_\varepsilon(t) \) is defined as follows for \(t \in [0, \tau] \):

if \(\lambda < 0 \):
\[
\delta_{\varepsilon,W}(t) = \left(\frac{C^2}{-\lambda^4} \left(-\lambda^2 t^2 - 2\lambda t + 2e^{\lambda t} - 2 \right) + \frac{1}{\lambda^2} \left(\frac{C\gamma|W|}{-\lambda} \left(-\lambda t + e^{\lambda t} - 1 \right) + \lambda \left(\frac{\gamma^2(|W|/2)^2}{-\lambda} (e^{\lambda t} - 1) + \lambda \varepsilon^2 e^{\lambda t} \right) \right) \right)^{1/2}
\]

(1)

if \(\lambda > 0 \):
\[
\delta_{\varepsilon,W}(t) = \frac{1}{(3\lambda)^{3/2}} \left(\frac{C^2}{\lambda} \left(-9\lambda^2 t^2 - 6\lambda t + 2e^{3\lambda t} - 2 \right) + 3\lambda \left(\frac{C\gamma|W|}{\lambda} \left(-3\lambda t + e^{3\lambda t} - 1 \right) + 3\lambda \varepsilon^2 e^{3\lambda t} \right) \right) \right)^{1/2}
\]

(2)

if \(\lambda = 0 \):
\[
\delta_{\varepsilon,W}(t) = \left(C^2 \left(-t^2 - 2t + 2e^t - 2 \right) + \left(C\gamma|W| \left(-t + e^t - 1 \right) + \left(\gamma^2(|W|/2)^2 (e^t - 1) + \varepsilon^2 e^t \right) \right) \right)^{1/2}
\]

(3)
Proposition

Suppose that, for some index $1 \leq j \leq n$, we have $m_+^j < M_-^j$ where m_+^j (resp. M_-^j) denotes the minimum (resp. maximum) of $\bar{x}_j^i(t) + \delta_{\varepsilon, \mathcal{W}}(t)$ (resp. $\bar{x}_j^i(t) - \delta_{\varepsilon, \mathcal{W}}(t)$) for $t \in [iT, (i+1)T]$. Then $B[iT, (i+1)T]$ contains no fixed point of Σ'.
Consider the Van der Pol (VdP) system Σ_p of dimension $n = 2$ with parameter $p \in \mathbb{R}$, and initial condition in $B_0 = B(x_0, \varepsilon)$ for some $x_0 \in \mathbb{R}^2$ and $\varepsilon > 0$ (see [BQ20]):

$$\begin{cases} \frac{du_1}{dt} = u_2 \\ \frac{du_2}{dt} = pu_2 - pu_1^2 u_2 - u_1 \end{cases}$$ (4)
Van der Pol System with uncertainty

Consider now the system Σ' with uncertainty $w(\cdot) \in \mathcal{W}_0 = [-0.5, 0.5]$ and initial condition x_0:

$$\begin{cases}
\frac{du_1}{dt} = u_2 \\
\frac{du_2}{dt} = (p_0 + w)u_2 - (p_0 + w)u_1^2u_2 - u_1
\end{cases} \tag{5}$$

with $p_0 = 1.1$. It is easy to see that each solution of Σ_p with $p \in [p_0 - 0.5, p_0 + 0.5] = [0.6, 1.6]$ is a particular solution of system Σ'.

Van der Pol System with uncertainty

VdP system with parameter $p_0 = 1.1$, uncertainty $|\mathcal{W}_0| = 0.5$, initial radius $\varepsilon_0 = 0.2$, initial point $x_0 = (1.7018, -0.1284)$, period $T_0 = 6.746$, time-step $\tau = 10^{-3}$.

- We have: $B((i_0 + 1)T_0) \subset B(i_0T_0)$ for $i_0 = 3$.
- The minimum m_+^1 of the upper green curve $\bar{u}_1(t) + \delta_{\mathcal{W}}(t)$ is less than the maximum M_-^1 of the lower green curve $\bar{u}_1(t) - \delta_{\mathcal{W}}(t)$.
- Whatever the value of $p \in [p_0 - |\mathcal{W}_0|, p_0 + |\mathcal{W}_0|] = [0.6, 1.6]$, the solution of Σ_p never converges to a point of \mathbb{R}^n.
- Since the size of the system is $n = 2$, it follows by Poincaré-Bendixson’s theorem that the solution of Σ_p converges always towards a limit circle.
Consider now the system Σ' with uncertainty $w(\cdot) \in W_1 = [-0.2, 0.2]$ and initial condition x_0:

$$
\begin{align*}
\frac{du_1}{dt} &= u_2 \\
\frac{du_2}{dt} &= (p_1 + w)u_2 - (p_1 + w)u_1^2u_2 - u_1
\end{align*}
$$

with $p_1 = 0.4$. It is easy to see that each solution of Σ_p with $p \in [p_1 - 0.2, p_1 + 0.2] = [0.2, 0.6]$ is a particular solution of system Σ'.

(5)
VdP system with parameter $p_1 = 0.4$, uncertainty $|\mathcal{W}_1| = 0.2$, initial radius $\varepsilon_1 = 0.2$, initial point $x_0 = (1.7018, -0.1284)$, period $T_1 = 6.347$, time-step $\tau = 10^{-3}$.

- We have: $B((i_1 + 1)T_1) \subset B(i_1 T_1)$ for $i_1 = 3$.
- We have $m_1^+ < M_1^-$, this shows that whatever the value of $p \in [p_1 - |\mathcal{W}_1|, p_1 + |\mathcal{W}_1|] = [0.2, 0.6]$, the solution of Σ_p never converges to a point of \mathbb{R}^n.
- It follows by Poincaré-Bendixson’s theorem that the solution of Σ_p converges always towards a limit circle for any $p \in [0.2, 0.6]$ and initial condition in $B(x_0, \varepsilon_1)$.
Consider now the system Σ' with uncertainty $w(\cdot) \in \mathcal{W}_2 = [-0.3, 0.3]$ and initial condition x_0:

\[
\begin{align*}
\frac{du_1}{dt} &= u_2 \\
\frac{d u_2}{dt} &= (p_2 + w)u_2 - (p_2 + w)u_1^2 u_2 - u_1
\end{align*}
\] \tag{5}

with $p_2 = 1.9$. It is easy to see that each solution of Σ_p with $p \in [p_2 - 0.3, p_2 + 0.3] = [1.6, 2.2]$ is a particular solution of system Σ'.
VdP system with parameter $p_2 = 1.9$, uncertainty $|\mathcal{W}_2| = 0.3$, initial radius $\varepsilon_2 = 0.1$, initial point $x_0 = (1.7018, -0.1284)$, period $T_2 = 7.531$, time-step $\tau = 10^{-3}$.

- We have: $B((i_2 + 1)T_2) \subset B(i_2 T_2)$ for $i_2 = 3$.
- We have $m_1^+ < M_1^-$, then whatever the value of $p \in [p_2 - |\mathcal{W}_2|, p_2 + |\mathcal{W}_2|] = [1.6, 2.2]$, the solution of Σ_p never converges to a point of \mathbb{R}^n.
- It follows by Poincaré-Bendixson’s theorem that the solution of Σ_p converges always towards a limit circle for any $p \in [1.6, 2.2]$ and initial condition in $B(x_0, \varepsilon_2)$.
Let $B_{WW}^u(t) \equiv B(\bar{Y}_{x_0}^{u,0}(t), \delta_{\epsilon,WW}^u(t))$.

Lemma 1. Suppose

\[(**) \quad B_{WW}((i + K)\Delta t) \subset B_{WW}(i\Delta t), \text{ for some } i \geq 0. \]

Then we have: $\lambda_i^{i+1} + \cdots + \lambda_i^{i+K} < 0$, where $-\lambda_i^j$ is the local rate of contraction\(^5\) for the region occupied by the system at $t \in [(j-1)\Delta t, j\Delta t]$ \((j = i+1, \ldots, i+K)\). This means that, from $t = i\Delta t$, the unperturbed system is contracting (i.e., the distance between two trajectories decreases exponentially) every $T = K\Delta t$ time-steps), and the unperturbed system converges to a limit cycle.

Proof. (sketch). Ad absurdum: Suppose $\lambda_i^{i+1} + \cdots + \lambda_i^{i+K} \geq 0$. It follows, using (H): $\delta_{\mu,WW}((i + K)\Delta t) \geq e^{(\lambda_i^{i+1} + \cdots + \lambda_i^{i+K})\Delta t} \delta_{\mu,WW}(i\Delta t) \geq \delta_{\mu,WW}(i\Delta t)$. This implies that the radius of $B_{WW}((i + K)\Delta t)$ is greater than or equal to the radius of $B_{WW}(i\Delta t)$, which contradicts (**). So $\lambda_i^{i+1} + \cdots + \lambda_i^{i+K} < 0$, which implies that the unperturbed system converges to an LC (see [20], Theorem 2).\(^6\)
Theorem 2. Let $y_0 \in S$ be a point of ε-representative $z_0 \in \mathcal{X}$ (so $\|y_0 - z_0\| \leq \varepsilon$). Let $T = kT = K\Delta t$. Let $\pi \in U^k$ be the optimal pattern output by PROC$^\varepsilon_k(z_0)$ for the unperturbed system with finite horizon T. Let us consider the tube $B_W(t) \equiv B(\tilde{Y}^{\pi^*}_{z_0,0}(t), \delta^\pi_{\mu,\mathcal{W}}(t))$ for some $\mu \geq \varepsilon$. Suppose that the following inclusion condition holds:

\begin{equation}
(*) \quad B_W((i + K)\Delta t) \subseteq B_W(i\Delta t) \text{ for some } i \geq 0.
\end{equation}

Then:

1) The exact solution $Y^\pi_{y_0,0}(t)$ of the unperturbed system under control π^* converges to an LC \mathcal{L} when $t \to \infty$.

2) For all $w \in \mathcal{W}$, the exact solution $Y^\pi_{y_0,w}(t)$ of the perturbed system under π^* always remains inside the tube $B_W(t)$, which is bounded and contains \mathcal{L}.

This reflects the robustness of the perturbed system under π^*.

