Modeling and verification of real-time distributed systems (12h)

Benedikt Bollig
bollig@lsv.ens-cachan.fr

February 2014
Outline
Outline

Modeling 1. communication
Modeling 1. communication
 a) shared variables
Outline

Modeling 1. communication
 a) shared variables
 b) message passing
Outline

Modeling 1. communication
 a) shared variables
 b) message passing
 c) timing constraints
Outline

Modeling

1. communication
 a) shared variables
 b) message passing
 c) timing constraints

2. time
Outline

Modeling

1. communication
 a) shared variables
 b) message passing
 c) timing constraints

2. time
 a) synchronous
Outline

Modeling

1. communication
 a) shared variables
 b) message passing
 c) timing constraints

2. time
 a) synchronous
 b) asynchronous
Outline

Modeling

1. communication
 a) shared variables
 b) message passing
 c) timing constraints

2. time
 a) synchronous
 b) asynchronous

3. behavior
Outline

Modeling

1. communication
 a) shared variables
 b) message passing
 c) timing constraints

2. time
 a) synchronous
 b) asynchronous

3. behavior
 a) timed
Outline

Modeling

1. communication
 a) shared variables
 b) message passing
 c) timing constraints

2. time
 a) synchronous
 b) asynchronous

3. behavior
 a) timed
 b) untimed
Outline

Modeling

1. communication
 a) shared variables
 b) message passing
 c) timing constraints

2. time
 a) synchronous
 b) asynchronous

3. behavior
 a) timed
 b) untimed

Contents

1. distributed timed automata (1abc, 2b, 3b)
Outline

Modeling

1. communication
 a) shared variables
 b) message passing
 c) timing constraints

2. time
 a) synchronous
 b) asynchronous

3. behavior
 a) timed
 b) untimed

Contents

1. distributed timed automata (1abc,2b,3b)
2. timed message sequence charts (1b,2a,3a)
Outline

Modeling 1. communication
 a) shared variables
 b) message passing
 c) timing constraints

2. time
 a) synchronous
 b) asynchronous

3. behavior
 a) timed
 b) untimed

Contents 1. distributed timed automata (1abc,2b,3b)
2. timed message sequence charts (1b,2a,3a)
3. timed Petri nets (1a,2a,3a)
Distributed Timed Automata

The Model

Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics

Summary

Message Sequence Charts with Timing Constraints (TC-MSCs)

Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints
Timed Channel Systems

Time(d) Petri Nets

Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Timed automata

Example:

\[s_0 \quad y \leq 3 \]

\[s_1 \quad x \leq 3 \]

\[a, x := 0 \quad a, y := 0 \]

\[y := 0 \]

\[x \geq 1, a \quad y \geq 1, b \]

\[s_0 \rightarrow \quad s_1 \rightarrow \quad s_2 \]

\[a, 0.7 \quad a, 1.5 \quad a, 2.6 \quad a, 3.3 \quad b, 5.0 \]

\[s_0 \rightarrow s_0 \rightarrow s_0 \rightarrow s_1 \rightarrow s_1 \rightarrow s_2 \]

\[x = 0 \quad y = 0 \]
Timed automata

Definition: timed automaton

A timed automaton is a tuple $A = (S, \Sigma, X, T, \text{Inv}, s_0, F)$ where:

- S is a finite set of states
A timed automaton is a tuple $\mathcal{A} = (S, \Sigma, X, T, \text{Inv}, s_0, F)$ where:

- S is a finite set of states
- Σ is the alphabet of actions
Definition: timed automaton

A *timed automaton* is a tuple $A = (S, \Sigma, X, T, \text{Inv}, s_0, F)$ where:

- S is a finite set of *states*
- Σ is the alphabet of *actions*
- X is a finite set of *clocks*
A **timed automaton** is a tuple $\mathcal{A} = (S, \Sigma, X, T, \text{Inv}, s_0, F)$ where:

- S is a finite set of *states*
- Σ is the alphabet of *actions*
- X is a finite set of *clocks*
- $T \subseteq S \times \Sigma_\varepsilon \times \text{Constr}(X) \times 2^X \times S$ is the finite set of *transitions*

$(\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\})$
Timed automata

Definition: timed automaton

A timed automaton is a tuple \(\mathcal{A} = (S, \Sigma, X, T, \text{Inv}, s_0, F) \) where:

- \(S \) is a finite set of *states*
- \(\Sigma \) is the alphabet of *actions*
- \(X \) is a finite set of *clocks*
- \(T \subseteq S \times \Sigma_{\varepsilon} \times \text{Constr}(X) \times 2^X \times S \) is the finite set of *transitions*
 \((\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\})\)
- \(\text{Inv} : S \rightarrow \text{Constr}(X) \) associates with each state an *invariant*
A **timed automaton** is a tuple $\mathcal{A} = (S, \Sigma, X, T, \text{Inv}, s_0, F)$ where:

- S is a finite set of *states*
- Σ is the alphabet of *actions*
- X is a finite set of *clocks*
- $T \subseteq S \times \Sigma \times \text{Constr}(X) \times 2^X \times S$ is the finite set of *transitions* ($\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$)
- $\text{Inv} : S \to \text{Constr}(X)$ associates with each state an *invariant*
- $s_0 \in S$ is the *initial state*
Timed automata

Definition: timed automaton

A *timed automaton* is a tuple $\mathcal{A} = (S, \Sigma, X, T, \text{Inv}, s_0, F)$ where:

- S is a finite set of *states*
- Σ is the alphabet of *actions*
- X is a finite set of *clocks*
- $T \subseteq S \times \Sigma \times \text{Constr}(X) \times 2^X \times S$ is the finite set of *transitions* ($\Sigma \varepsilon = \Sigma \cup \{\varepsilon\}$)
- $\text{Inv} : S \to \text{Constr}(X)$ associates with each state an *invariant*
- $s_0 \in S$ is the *initial state*
- $F \subseteq S$ is the set of *final states*
Timed automata

Definition: timed automaton

A timed automaton is a tuple \(\mathcal{A} = (S, \Sigma, X, T, \text{Inv}, s_0, F) \) where:

- \(S \) is a finite set of states
- \(\Sigma \) is the alphabet of actions
- \(X \) is a finite set of clocks
- \(T \subseteq S \times \Sigma \varepsilon \times \text{Constr}(X) \times 2^X \times S \) is the finite set of transitions \((\Sigma \varepsilon = \Sigma \cup \{\varepsilon\})\)
- \(\text{Inv}: S \rightarrow \text{Constr}(X) \) associates with each state an invariant
- \(s_0 \in S \) is the initial state
- \(F \subseteq S \) is the set of final states

Here, the set \(\text{Constr}(X) \) of clock constraints over \(X \) is given by the grammar

\[
\varphi ::= \text{true} \mid \text{false} \mid x \bowtie c \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2
\]

where \(x \) ranges over \(X \), \(\bowtie \in \{<, \leq, >, \geq, =\} \), and \(c \in \mathbb{N} = \{0, 1, 2, \ldots \} \).
Timed automata

Definition: tim ed automaton

A timed automaton is a tuple $\mathcal{A} = (S, \Sigma, X, T, \text{Inv}, s_0, F)$ where:

- S is a finite set of states
- Σ is the alphabet of actions
- X is a finite set of clocks
- $T \subseteq S \times \Sigma \epsilon \times \text{Constr}(X) \times 2^X \times S$ is the finite set of transitions ($\Sigma \epsilon = \Sigma \uplus \{\epsilon\}$)
- $\text{Inv} : S \rightarrow \text{Constr}(X)$ associates with each state an invariant
- $s_0 \in S$ is the initial state
- $F \subseteq S$ is the set of final states

Here, the set $\text{Constr}(X)$ of clock constraints over X is given by the grammar

$$\varphi ::= \text{true} | \text{false} | x \bowtie c | \neg \varphi | \varphi_1 \land \varphi_2 | \varphi_1 \lor \varphi_2$$

where x ranges over X, $\bowtie \in \{<, \leq, >, \geq, =\}$, and $c \in \mathbb{N} = \{0, 1, 2, \ldots\}$.

Let $\text{Reset}(\mathcal{A}) = \{x \in X \mid$ there is $(s, a, \varphi, R, s') \in T$ such that $x \in R\}$.
Timed automata

Definition: timed automaton

A timed automaton is a tuple $A = (S, \Sigma, X, T, \text{Inv}, s_0, F)$ where:

- S is a finite set of states
- Σ is the alphabet of actions
- X is a finite set of clocks
- $T \subseteq S \times \Sigma \times \text{Constr}(X) \times 2^X \times S$ is the finite set of transitions ($\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$)
- $\text{Inv} : S \rightarrow \text{Constr}(X)$ associates with each state an invariant
- $s_0 \in S$ is the initial state
- $F \subseteq S$ is the set of final states

Here, the set $\text{Constr}(X)$ of clock constraints over X is given by the grammar

$$\varphi ::= \text{true} \mid \text{false} \mid x \preceq c \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2$$

where x ranges over X, $\preceq \in \{<, \leq, >, \geq, =\}$, and $c \in \mathbb{N} = \{0, 1, 2, \ldots\}$.

Let $\text{Reset}(A) = \{x \in X \mid \text{there is } (s, a, \varphi, R, s') \in T \text{ such that } x \in R\}$.

We assume that $\text{Inv}(s_0)$ is “satisfied” by the clock valuation over X that maps each clock to 0.
Distributed Timed automata

Definition: distributed timed automaton

\[D = ((A_p)_{p \in Proc}, \pi) \] where

- each \(A_p \) is a classical timed automaton
- \(\pi : X \rightarrow Proc \) assigns processes to clocks. If \(\pi(x) = p \) then
 - clock \(x \) evolves according to local time on process \(p \)
 - only process \(p \) may reset clock \(x \)
 - all processes may read clock \(x \) (i.e., use \(x \) in guards or invariants)

Example: DTA with \(\pi(x) = p \) and \(\pi(y) = q \)

\[A_p: \quad s_0 \xrightarrow{y \leq 1, a} s_1 \xrightarrow{a, x:=0} s_2 \]

\[A_q: \quad r_0 \xrightarrow{x \geq 1, b} r_1 \xrightarrow{y \leq 1} r_2 \xrightarrow{0 < x < 1, b} r_2 \]
Distributed timed automata

Fix a finite set \(\text{Proc} \) of \textit{processes}.

Definition: distributed timed automaton

A \textit{distributed timed automaton (DTA)} over \(\text{Proc} \) is a structure \(\mathcal{D} = (\mathcal{A}_p)_{p \in \text{Proc}}, \pi) : \\
\mathcal{A}_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s^p_0, F_p) \) is a timed automaton
Distributed timed automata

Fix a finite set Proc of processes.

Definition: distributed timed automaton

A *distributed timed automaton (DTA)* over Proc is a structure $\mathcal{D} = ((\mathcal{A}_p)_{p \in \text{Proc}}, \pi)$:

- $\mathcal{A}_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s^p_0, F_p)$ is a timed automaton
- $\pi : X(\mathcal{D}) \rightarrow \text{Proc}$ where $X(\mathcal{D}) := \bigcup_{p \in \text{Proc}} X_p$
Distributed timed automata

Fix a finite set \textit{Proc} of processes.

Definition: distributed timed automaton

A distributed timed automaton (DTA) over \textit{Proc} is a structure $\mathcal{D} = ((\mathcal{A}_p)_{p \in \textit{Proc}}, \pi)$:

- $\mathcal{A}_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s_0^p, F_p)$ is a timed automaton
- $\pi : X(\mathcal{D}) \rightarrow \textit{Proc}$ where $X(\mathcal{D}) := \bigcup_{p \in \textit{Proc}} X_p$
- for all $p \in \textit{Proc}$, $\text{Reset}(\mathcal{A}_p) \subseteq \pi^{-1}(p) \subseteq X_p$
Distributed timed automata

Fix a finite set $Proc$ of processes.

Definition: distributed timed automaton

A *distributed timed automaton (DTA)* over $Proc$ is a structure $D = ((A_p)_{p \in Proc}, \pi)$:

- $A_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s_0^p, F_p)$ is a timed automaton
- $\pi : X(D) \rightarrow Proc$ where $X(D) := \bigcup_{p \in Proc} X_p$
- for all $p \in Proc$, $\text{Reset}(A_p) \subseteq \pi^{-1}(p) \subseteq X_p$
- for all $p, q \in Proc$, $p \neq q$ implies $\Sigma_p \cap \Sigma_q = \emptyset$
Distributed timed automata

Fix a finite set Proc of processes.

Definition: distributed timed automaton

A **distributed timed automaton (DTA)** over Proc is a structure $\mathcal{D} = ((\mathcal{A}_p)_{p \in \text{Proc}}, \pi)$:

- $\mathcal{A}_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s^0_p, F_p)$ is a timed automaton
- $\pi : X(\mathcal{D}) \to \text{Proc}$ where $X(\mathcal{D}) := \bigcup_{p \in \text{Proc}} X_p$
- for all $p \in \text{Proc}$, $\text{Reset}(\mathcal{A}_p) \subseteq \pi^{-1}(p) \subseteq X_p$
- for all $p, q \in \text{Proc}$, $p \neq q$ implies $\Sigma_p \cap \Sigma_q = \emptyset$

Syntactically, $\pi(x) = p$ means that

- only p may reset x, but
- all processes can read x (in guards or invariants).
Distributed timed automata

Fix a finite set $Proc$ of processes.

Definition: distributed timed automaton

A *distributed timed automaton (DTA)* over $Proc$ is a structure $D = ((A_p)_{p \in Proc}, \pi)$:

- $A_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s^p_0, F_p)$ is a timed automaton
- $\pi : X(D) \to Proc$ where $X(D) := \bigcup_{p \in Proc} X_p$
- for all $p \in Proc$, $\text{Reset}(A_p) \subseteq \pi^{-1}(p) \subseteq X_p$
- for all $p, q \in Proc$, $p \neq q$ implies $\Sigma_p \cap \Sigma_q = \emptyset$

Syntactically, $\pi(x) = p$ means that

- only p may reset x, but
- all processes can read x (in guards or invariants).

Semantically, $\pi(x) = p$ means that

- x evolves according to the local time of p.
Distributed timed automata

Example: DTA with $\pi(x) = p$ and $\pi(y) = q$

A_p: $s_0 \xrightarrow{y \leq 1, a} s_1 \xrightarrow{a, x:=0} s_2$

A_q: $r_0 \xrightarrow{x \geq 1, b} r_1 \xrightarrow{y \leq 1, 0 < x < 1, b} r_2$
Local Times

- Processes do not have access to the absolute (global) time.
- Each process has its own local time: \(\tau_p : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \)

\[\tau_p(t) : \text{local time on process } p \text{ at absolute time } t \]

- We require \(\tau_p(0) = 0 \) and that \(\tau_p \) is
 - continuous: \(\lim_{t \rightarrow t'} \tau_p(t) = \tau_p(t') \)
 - strictly increasing: \(t < t' \) implies \(\tau_p(t) < \tau_p(t') \)
 - diverging: for all \(t \), there is \(t' \) such that \(\tau_p(t') > t \)
Processes do not have access to the absolute (global) time.

Each process has its own local time: \(\tau_p : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \)

\(\tau_p(t) \): local time on process \(p \) at absolute time \(t \)

We require \(\tau_p(0) = 0 \) and that \(\tau_p \) is

- continuous: \(\lim_{t \to t'} \tau_p(t) = \tau_p(t') \)
- strictly increasing: \(t < t' \) implies \(\tau_p(t) < \tau_p(t') \)
- diverging: for all \(t \), there is \(t' \) such that \(\tau_p(t') > t \)

We set \(Rates \) to be the set of tuples \(\tau = (\tau_p)_{p \in Proc} \) where each \(\tau_p \) is a local time function.
Processes do not have access to the absolute (global) time.

Each process has its own local time: \(\tau_p : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0} \)

\(\tau_p(t) \): local time on process \(p \) at absolute time \(t \)

We require \(\tau_p(0) = 0 \) and that \(\tau_p \) is

- continuous: \(\lim_{t \to t'} \tau_p(t) = \tau_p(t') \)
- strictly increasing: \(t < t' \) implies \(\tau_p(t) < \tau_p(t') \)
- diverging: for all \(t \), there is \(t' \) such that \(\tau_p(t') > t \)

We set \(Rates \) to be the set of tuples \(\tau = (\tau_p)_{p \in Proc} \) where each \(\tau_p \) is a local time function. Note that \(\tau \) can also be seen as a function \(\mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}^{Proc} \).
Local Times

Example: Local times
Runs of DTA & Untimed behaviours

Example: DTA \mathcal{D} with $\pi(x) = p$ and $\pi(y) = q$

A_p:

\[
\begin{align*}
A_p: & \quad s_0 \xrightarrow{y \leq 1, a} s_1 \xrightarrow{a, x:=0} s_2 \\
& \quad x = 0, 0.4 \\
& \quad y = 0, 0.2
\end{align*}
\]

A_q:

\[
\begin{align*}
A_q: & \quad r_0 \xrightarrow{x \geq 1, b} r_1 \xrightarrow{y \leq 1, 0 < x < 1, b} r_2 \\
& \quad x = 0, 0.4 \\
& \quad y = 0, 0.2
\end{align*}
\]

If $\tau_p > \tau_q$ then $abab \in L(\mathcal{D}, \tau)$ (e.g. $\tau_p(t) = 2t$ and $\tau_q(t) = t$)

\[
\begin{align*}
& \quad s_0 \xrightarrow{a} s_1 \xrightarrow{b} s_1 \xrightarrow{a} s_2 \xrightarrow{b} s_2 \\
& \quad r_0 \xrightarrow{0.2} r_0 \xrightarrow{0.6} r_1 \xrightarrow{0.7} r_1 \xrightarrow{0.8} r_2 \\
& \quad x = 0, 0.4 \\
& \quad y = 0, 0.2
\end{align*}
\]
Runs of DTA & Untimed behaviours

Example: DTA \mathcal{D} with $\pi(x) = p$ and $\pi(y) = q$

$A_p:\quad s_0 \xrightarrow{y \leq 1, a} s_1 \xrightarrow{a, x:=0} s_2$

$A_q:\quad r_0 \xrightarrow{x \geq 1, b} r_1 \xrightarrow{y \leq 1} 0 < x < 1, b \xrightarrow{} r_2$

If $\tau_p > \tau_q$ then $abab \in L(\mathcal{D}, \tau)$ (e.g. $\tau_p(t) = 2t$ and $\tau_q(t) = t$)

If $\tau_p = \tau_q$ then $abab \notin L(\mathcal{D}, \tau)$ (e.g. $\tau_p(t) = \tau_q(t) = 2t$)
Definition: icTA

A timed automaton with independently evolving clocks (icTA) is a pair $\mathcal{B} = (\mathcal{A}, \pi)$:

- $\mathcal{A} = (S, \Sigma, X, T, \text{Inv}, s_0, F)$ is a timed automaton
- $\pi : X \rightarrow \text{Proc}$ assigns “processes” to clocks

If $\pi(x) = p$ then clock x evolves according to local time τ_p.

Example: icTA \mathcal{B} with $\pi(x) = p$ and $\pi(y) = q$
Semantics of icTA

For a valuation $\nu : X \rightarrow \mathbb{R}_{\geq 0}$ and $t = (t_p)_{p \in \text{Proc}} \in \mathbb{R}^\text{Proc}_{\geq 0}$, let $\nu + t$ be the valuation defined by $(\nu + t)(x) = \nu(x) + t_\pi(x)$.
Semantics of icTA

For a valuation $\nu: X \rightarrow \mathbb{R}_{\geq 0}$ and $t = (t_p)_{p \in \text{Proc}} \in \mathbb{R}_{\geq 0}^{\text{Proc}}$, let $\nu + t$ be the valuation defined by $(\nu + t)(x) = \nu(x) + t\pi(x)$. Intuitively, when time passes, we add to every clock the time elapse that corresponds to the local time of the owner of x.
Semantics of icTA

For a valuation $\nu : X \to \mathbb{R}_{\geq 0}$ and $t = (t_p)_{p \in \text{Proc}} \in \mathbb{R}_{\geq 0}^{\text{Proc}}$, let $\nu + t$ be the valuation defined by $(\nu + t)(x) = \nu(x) + t_{\pi(x)}$. Intuitively, when time passes, we add to every clock the time elapsed that corresponds to the local time of the owner of x.

For $\tau \in \text{Rates}$, a τ-run of B is a sequence

$$(s_0, \nu_0) \xrightarrow{a_1, t_1} (s_1, \nu_1) \xrightarrow{a_2, t_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n, t_n} (s_n, \nu_n)$$
Semantics of icTA

For a valuation $\nu : X \to \mathbb{R}_{\geq 0}$ and $t = (t_p)_{p \in \text{Proc}} \in \mathbb{R}^\text{Proc}_{\geq 0}$, let $\nu + t$ be the valuation defined by $(\nu + t)(x) = \nu(x) + t_{\pi(x)}$. Intuitively, when time passes, we add to every clock the time elapse that corresponds to the local time of the owner of x.

For $\tau \in \text{Rates}$, a τ-run of B is a sequence

$$(s_0, \nu_0) \xrightarrow{a_1, t_1} (s_1, \nu_1) \xrightarrow{a_2, t_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n, t_n} (s_n, \nu_n)$$

where $n \geq 0$, $s_i \in S$, $\nu_i : X \to \mathbb{R}_{\geq 0}$ (with $\nu_0(x) = 0$ for all $x \in X$), $a_i \in \Sigma_{\varepsilon}$, and $(t_i)_{1 \leq i \leq n}$ is a non-decreasing sequence of values from $\mathbb{R}_{\geq 0}$.
Semantics of icTA

For a valuation $\nu : X \to \mathbb{R}_{\geq 0}$ and $t = (t_p)_{p \in \text{Proc}} \in \mathbb{R}_{\geq 0}^\text{Proc}$, let $\nu + t$ be the valuation defined by $(\nu + t)(x) = \nu(x) + t \pi(x)$. Intuitively, when time passes, we add to every clock the time elapse that corresponds to the local time of the owner of x.

For $\tau \in \text{Rates}$, a τ-run of B is a sequence

$$(s_0, \nu_0) \xrightarrow{a_1,t_1} (s_1, \nu_1) \xrightarrow{a_2,t_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n,t_n} (s_n, \nu_n)$$

where $n \geq 0$, $s_i \in S$, $\nu_i : X \to \mathbb{R}_{\geq 0}$ (with $\nu_0(x) = 0$ for all $x \in X$), $a_i \in \Sigma_\epsilon$, and $(t_i)_{1 \leq i \leq n}$ is a non-decreasing sequence of values from $\mathbb{R}_{\geq 0}$. Further, for all $i \in \{1, \ldots, n\}$, there are $\varphi_i \in \text{Constr}(X)$ and $R_i \subseteq X$ such that the following conditions hold (let $t_0 = 0$):
Semantics of icTA

For a valuation $\nu : X \rightarrow \mathbb{R}_{\geq 0}$ and $t = (t_p)_{p \in \text{Proc}} \in \mathbb{R}_{\geq 0}^{\text{Proc}}$, let $\nu + t$ be the valuation defined by $(\nu + t)(x) = \nu(x) + t\pi(x)$. Intuitively, when time passes, we add to every clock the time elapse that corresponds to the local time of the owner of x.

For $\tau \in \text{Rates}$, a τ-run of B is a sequence

$$(s_0, \nu_0) \xrightarrow{a_1,t_1} (s_1, \nu_1) \xrightarrow{a_2,t_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n,t_n} (s_n, \nu_n)$$

where $n \geq 0$, $s_i \in S$, $\nu_i : X \rightarrow \mathbb{R}_{\geq 0}$ (with $\nu_0(x) = 0$ for all $x \in X$), $a_i \in \Sigma_\varepsilon$, and $(t_i)_{1 \leq i \leq n}$ is a non-decreasing sequence of values from $\mathbb{R}_{\geq 0}$. Further, for all $i \in \{1, \ldots, n\}$, there are $\varphi_i \in \text{Constr}(X)$ and $R_i \subseteq X$ such that the following conditions hold (let $t_0 = 0$):

$$(s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T$$
Semantics of icTA

For a valuation $\nu : X \to \mathbb{R}_{\geq 0}$ and $t = (t_p)_{p \in \text{Proc}} \in \mathbb{R}_{\geq 0}^\text{Proc}$, let $\nu + t$ be the valuation defined by $(\nu + t)(x) = \nu(x) + t\pi(x)$. Intuitively, when time passes, we add to every clock the time elapse that corresponds to the local time of the owner of x.

For $\tau \in \text{Rates}$, a τ-run of B is a sequence

$$(s_0, \nu_0) \xrightarrow{a_1, t_1} (s_1, \nu_1) \xrightarrow{a_2, t_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n, t_n} (s_n, \nu_n)$$

where $n \geq 0$, $s_i \in S$, $\nu_i : X \to \mathbb{R}_{\geq 0}$ (with $\nu_0(x) = 0$ for all $x \in X$), $a_i \in \Sigma_\epsilon$, and $(t_i)_{1 \leq i \leq n}$ is a non-decreasing sequence of values from $\mathbb{R}_{\geq 0}$. Further, for all $i \in \{1, \ldots, n\}$, there are $\varphi_i \in \text{Constr}(X)$ and $R_i \subseteq X$ such that the following conditions hold (let $t_0 = 0$):

1. $(s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T$
2. $\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) \models \varphi_i$
Semantics of icTA

For a valuation $\nu : X \to \mathbb{R}_{\geq 0}$ and $t = (t_p)_{p \in \text{Proc}} \in \mathbb{R}^\text{Proc}_{\geq 0}$, let $\nu + t$ be the valuation defined by $(\nu + t)(x) = \nu(x) + t\pi(x)$. Intuitively, when time passes, we add to every clock the time elapse that corresponds to the local time of the owner of x.

For $\tau \in \text{Rates}$, a τ-run of B is a sequence

$$
(s_0, \nu_0) \xrightarrow{a_1, t_1} (s_1, \nu_1) \xrightarrow{a_2, t_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n, t_n} (s_n, \nu_n)
$$

where $n \geq 0$, $s_i \in S$, $\nu_i : X \to \mathbb{R}_{\geq 0}$ (with $\nu_0(x) = 0$ for all $x \in X$), $a_i \in \Sigma_\varepsilon$, and $(t_i)_{1 \leq i \leq n}$ is a non-decreasing sequence of values from $\mathbb{R}_{\geq 0}$. Further, for all $i \in \{1, \ldots, n\}$, there are $\varphi_i \in \text{Constr}(X)$ and $R_i \subseteq X$ such that the following conditions hold (let $t_0 = 0$):

1. $(s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T$
2. $\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) \models \varphi_i$
3. $\nu_{i-1} + \tau(t') - \tau(t_{i-1}) \models \text{Inv}(s_{i-1})$ for each $t' \in [t_{i-1}, t_i]$
Semantics of icTA

For a valuation $\nu : X \to \mathbb{R}_{\geq 0}$ and $t = (t_p)_{p \in \text{Proc}} \in \mathbb{R}_{\geq 0}^{\text{Proc}}$, let $\nu + t$ be the valuation defined by $(\nu + t)(x) = \nu(x) + t \pi(x)$. Intuitively, when time passes, we add to every clock the time elapse that corresponds to the local time of the owner of x.

For $\tau \in \text{Rates}$, a τ-run of B is a sequence

$$(s_0, \nu_0) \xrightarrow{a_1, t_1} (s_1, \nu_1) \xrightarrow{a_2, t_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n, t_n} (s_n, \nu_n)$$

where $n \geq 0$, $s_i \in S$, $\nu_i : X \to \mathbb{R}_{\geq 0}$ (with $\nu_0(x) = 0$ for all $x \in X$), $a_i \in \Sigma_\epsilon$, and $(t_i)_{1 \leq i \leq n}$ is a non-decreasing sequence of values from $\mathbb{R}_{\geq 0}$. Further, for all $i \in \{1, \ldots, n\}$, there are $\phi_i \in \text{Constr}(X)$ and $R_i \subseteq X$ such that the following conditions hold (let $t_0 = 0$):

- $(s_{i-1}, a_i, \phi_i, R_i, s_i) \in T$
- $\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) \models \phi_i$
- $\nu_{i-1} + \tau(t') - \tau(t_{i-1}) \models \text{Inv}(s_{i-1})$ for each $t' \in [t_{i-1}, t_i]$
- $\nu_i = (\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}))[R_i \leftarrow 0]$
Semantics of icTA

For a valuation \(\nu : X \rightarrow \mathbb{R}_{\geq 0} \) and \(t = (t_p)_{p \in \text{Proc}} \in \mathbb{R}_{\geq 0}^{\text{Proc}} \), let \(\nu + t \) be the valuation defined by \((\nu + t)(x) = \nu(x) + t \pi(x) \). Intuitively, when time passes, we add to every clock the time elapse that corresponds to the local time of the owner of \(x \).

For \(\tau \in \text{Rates} \), a \(\tau \)-run of \(B \) is a sequence

\[
(s_0, \nu_0) \xrightarrow{a_1, t_1} (s_1, \nu_1) \xrightarrow{a_2, t_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n, t_n} (s_n, \nu_n)
\]

where \(n \geq 0 \), \(s_i \in S \), \(\nu_i : X \rightarrow \mathbb{R}_{\geq 0} \) (with \(\nu_0(x) = 0 \) for all \(x \in X \)), \(a_i \in \Sigma_\varepsilon \), and \((t_i)_{1 \leq i \leq n}\) is a non-decreasing sequence of values from \(\mathbb{R}_{\geq 0} \). Further, for all \(i \in \{1, \ldots, n\} \), there are \(\varphi_i \in \text{Constr}(X) \) and \(R_i \subseteq X \) such that the following conditions hold (let \(t_0 = 0 \)):

\[
\begin{align*}
\triangleright & \quad (s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T \\
\triangleright & \quad \nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) \models \varphi_i \\
\triangleright & \quad \nu_{i-1} + \tau(t') - \tau(t_{i-1}) \models \text{Inv}(s_{i-1}) \quad \text{for each } t' \in [t_{i-1}, t_i] \\
\triangleright & \quad \nu_i = (\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}))[R_i \leftarrow 0] \\
\triangleright & \quad \nu_i \models \text{Inv}(s_i)
\end{align*}
\]
Semantics of icTA

For a valuation $\nu : X \rightarrow \mathbb{R}_{\geq 0}$ and $t = (t_p)_{p \in \text{Proc}} \in \mathbb{R}_{\geq 0}^\text{Proc}$, let $\nu + t$ be the valuation defined by $(\nu + t)(x) = \nu(x) + t\pi(x)$. Intuitively, when time passes, we add to every clock the time elapse that corresponds to the local time of the owner of x.

For $\tau \in \text{Rates}$, a τ-run of B is a sequence

$$(s_0, \nu_0) \xrightarrow{a_1, t_1} (s_1, \nu_1) \xrightarrow{a_2, t_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n, t_n} (s_n, \nu_n)$$

where $n \geq 0$, $s_i \in S$, $\nu_i : X \rightarrow \mathbb{R}_{\geq 0}$ (with $\nu_0(x) = 0$ for all $x \in X$), $a_i \in \Sigma_\epsilon$, and $(t_i)_{1 \leq i \leq n}$ is a non-decreasing sequence of values from $\mathbb{R}_{\geq 0}$. Further, for all $i \in \{1, \ldots, n\}$, there are $\varphi_i \in \text{Constr}(X)$ and $R_i \subseteq X$ such that the following conditions hold (let $t_0 = 0$):

1. $(s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T$
2. $\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) \models \varphi_i$
3. $\nu_{i-1} + \tau(t') - \tau(t_{i-1}) \models \text{Inv}(s_{i-1})$ for each $t' \in [t_{i-1}, t_i]$
4. $\nu_i = (\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}))[R_i \leftarrow 0]$
5. $\nu_i \models \text{Inv}(s_i)$

In this case, we write $(B, \tau) : s_0 \xrightarrow{a_1 \cdots a_n} s_n$.
Semantics of icTA

Definition: existential and universal semantics of icTA

Let $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA and $\tau \in Rates$. We let

$$L(\mathcal{B}, \tau) := \{ w \in \Sigma^* \mid (\mathcal{B}, \tau) : s_0 \xrightarrow{w} s \text{ for some } s \in F \}$$
Definition: existential and universal semantics of icTA

Let $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA and $\tau \in \text{Rates}$. We let

$$L(\mathcal{B}, \tau) := \{ w \in \Sigma^* \mid (\mathcal{B}, \tau) : s_0 \xrightarrow{w} s \text{ for some } s \in F \}$$

$$L_\exists(\mathcal{B}) := \bigcup_{\tau \in \text{Rates}} L(\mathcal{B}, \tau)$$
Semantics of icTA

Definition: existential and universal semantics of icTA

Let $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA and $\tau \in Rates$. We let

$$L(\mathcal{B}, \tau) := \{ w \in \Sigma^* \mid (\mathcal{B}, \tau) : s_0 \xrightarrow{w} s \text{ for some } s \in F \}$$

$$L_{\exists}(\mathcal{B}) := \bigcup_{\tau \in Rates} L(\mathcal{B}, \tau)$$

$$L_{\forall}(\mathcal{B}) := \bigcap_{\tau \in Rates} L(\mathcal{B}, \tau)$$
Semantics of icTA

Definition: existential and universal semantics of icTA

Let $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA and $\tau \in Rates$. We let

$$L(\mathcal{B}, \tau) := \{ w \in \Sigma^* | (\mathcal{B}, \tau) : s_0 \xrightarrow{w} s \text{ for some } s \in F\}$$

$$L_\exists(\mathcal{B}) := \bigcup_{\tau \in Rates} L(\mathcal{B}, \tau)$$

$$L_\forall(\mathcal{B}) := \bigcap_{\tau \in Rates} L(\mathcal{B}, \tau)$$

Aim: robustness of an icTA \mathcal{B} against relative local times

Negative Specifications (Safety)

Given a set Bad of undesired behaviours, does an icTA \mathcal{B} robustly avoid Bad, i.e., $L_\exists(\mathcal{B}) \cap \text{Bad} = \emptyset$?
Semantics of icTA

Definition: existential and universal semantics of icTA

Let $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA and $\tau \in \text{Rates}$. We let

$$L(\mathcal{B}, \tau) := \{w \in \Sigma^* \mid (\mathcal{B}, \tau) : s_0 \xrightarrow{w} s \text{ for some } s \in F\}$$

$$L_\exists(\mathcal{B}) := \bigcup_{\tau \in \text{Rates}} L(\mathcal{B}, \tau)$$

$$L_\forall(\mathcal{B}) := \bigcap_{\tau \in \text{Rates}} L(\mathcal{B}, \tau)$$

Aim: robustness of an icTA \mathcal{B} against relative local times

Negative Specifications (Safety)

Given a set Bad of undesired behaviours,

does an icTA \mathcal{B} robustly avoid Bad, i.e., $L_\exists(\mathcal{B}) \cap \text{Bad} = \emptyset$?

Positive Specifications (Liveness)

Given a set Good of desired behaviours,

does an icTA \mathcal{B} robustly exhibit Good, i.e., $\text{Good} \subseteq L_\forall(\mathcal{B})$?
Semantics of icTA

Example:
Consider the following icTA \mathcal{B} over $\text{Proc} = \{p, q\}$ with $\pi(x) = p$ and $\pi(y) = q$:

1. $L(\mathcal{B}, \text{id}) = \ldots$
2. $L_\exists(\mathcal{B}) = \ldots$
3. $L_\forall(\mathcal{B}) = \ldots$
Example:

Consider the following icTA \mathcal{B} over $\text{Proc} = \{p, q\}$ with $\pi(x) = p$ and $\pi(y) = q$:

$$
\begin{align*}
\text{L}(\mathcal{B}, \text{id}) &= \{a, ab, b\} \\
\text{L}_\exists(\mathcal{B}) &= \\
\text{L}_\forall(\mathcal{B}) &=
\end{align*}
$$
Semantics of icTA

Example:
Consider the following icTA \mathcal{B} over $Proc = \{p, q\}$ with $\pi(x) = p$ and $\pi(y) = q$:

\mathcal{B} over $Proc = \{p, q\}$ with $\pi(x) = p$ and $\pi(y) = q$:

$L(\mathcal{B}, \text{id}) = \{a, ab, b\}$

$L_\exists(\mathcal{B}) = \{a, ab, b, c\}$

$L_\forall(\mathcal{B}) =$
Semantics of icTA

Example:

Consider the following icTA B over $Proc = \{p, q\}$ with $\pi(x) = p$ and $\pi(y) = q$:

- $L(B, \text{id}) = \{a, ab, b\}$
- $L_\exists(B) = \{a, ab, b, c\}$
- $L_\forall(B) = \{a, ab\}$
Semantics of icTA

One more reason to look at the existential and universal semantics is that the “concrete” semantics can have non-regular behaviors.

Example:

Consider the following icTA B, with independent clocks x and y:

Let $\tau = (\text{id}, \tau_q)$, where τ_q is any continuous, strictly increasing function such that $\tau_q(0) = 0$ and $\tau_q(n) = 2^n - 0.5$ for all $n \geq 1$.
Semantics of icTA

One more reason to look at the existential and universal semantics is that the “concrete” semantics can have non-regular behaviors.

Example:

Consider the following icTA B, with independent clocks x and y:

Let $\tau = (\text{id}, \tau_q)$, where τ_q is any continuous, strictly increasing function such that $\tau_q(0) = 0$ and $\tau_q(n) = 2^n - 0.5$ for all $n \geq 1$. Then, $L(B, \tau)$ is the set of finite prefixes of the infinite word $bab^2ab^4ab^8ab^{16}a\ldots$, which is not a regular language.
Semantics of DTA \mathcal{D}

Example: Part of the icTA \mathcal{B}_D

A_p:
- From s_0, on input $y \leq 1$, move to s_1.
- From s_1, on input a, move to s_2, with $x := 0$.

A_q:
- From r_0, on input $x \geq 1$ and $y \leq 1$, move to r_1.
- From r_1, on input $0 < x < 1$, move to r_2.

Transitions:
- From (s_0, r_0), on input ε, move to (s_0, r_0).
- From (s_1, r_0), on input ε, move to (s_1, r_0).
- From (s_1, r_1), on input a, move to (s_1, r_1), with $z := 0$.
- From (s_1, r_1), on input b, move to (s_1, r_1), with $y \leq 1$ and $z \leq 0$.

Orchestrations:
- $(T1)$: $x \geq 1$ and $z := 0$.
- $(T2)$: $y \leq 1$ and $z \leq 0$.

Equations:
- $y \leq 1, a, x := 0$.
- $x \geq 1, b, y \leq 1, 0 < x < 1, b$.
Definition: Semantics of DTA

Let $\mathcal{D} = ((\mathcal{A}_p)_{p \in \text{Proc}}, \pi)$ be a DTA where $\mathcal{A}_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s_p^0, F_p)$. We associate with \mathcal{D} the iC TA $\mathcal{B}_\mathcal{D} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi')$ where

$\Sigma = \bigcup_{p \in \text{Proc}} \Sigma_p$
Semantics of DTA \mathcal{D} (formally)

Definition: Semantics of DTA

Let $\mathcal{D} = ((\mathcal{A}_p)_{p \in \text{Proc}}, \pi)$ be a DTA where $\mathcal{A}_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s_0^p, F_p)$. We associate with \mathcal{D} the icTA $\mathcal{B}_D = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi')$ where

- $\Sigma = \bigcup_{p \in \text{Proc}} \Sigma_p$
- $S = (\prod_{p \in \text{Proc}} S_p) \times 2^\Sigma$
Semantics of DTA \mathcal{D} (formally)

Definition: Semantics of DTA

Let $\mathcal{D} = ((\mathcal{A}_p)_{p \in \text{Proc}}, \pi)$ be a DTA where $\mathcal{A}_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s^p_0, F_p)$.

We associate with \mathcal{D} the iCTA $\mathcal{B}_\mathcal{D} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi')$ where

- $\Sigma = \bigcup_{p \in \text{Proc}} \Sigma_p$
- $S = (\prod_{p \in \text{Proc}} S_p) \times 2^\Sigma$
- $X = \{z\} \cup \bigcup_{p \in \text{Proc}} X_p$
Definition: Semantics of DTA

Let $\mathcal{D} = ((\mathcal{A}_p)_{p \in \text{Proc}}, \pi)$ be a DTA where $\mathcal{A}_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s^p_0, F_p)$. We associate with \mathcal{D} the icTA $\mathcal{B}_\mathcal{D} = (S, \Sigma, X, T, \text{Inv}, s^*_0, F, \pi')$ where

- $\Sigma = \bigcup_{p \in \text{Proc}} \Sigma_p$
- $S = \left(\prod_{p \in \text{Proc}} S_p \right) \times 2^\Sigma$
- $X = \{ \mathcal{z} \} \uplus \bigcup_{p \in \text{Proc}} X_p$
- $s^*_0 = (\langle s^p_0 \rangle_{p \in \text{Proc}}, \emptyset)$ and $F = (\prod_{p \in \text{Proc}} F_p) \times \{ \emptyset \}$
Definition: Semantics of DTA

Let $\mathcal{D} = ((\mathcal{A}_p)_{p \in \text{Proc}}, \pi)$ be a DTA where $\mathcal{A}_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s^p_0, F_p)$.

We associate with \mathcal{D} the icTA $\mathcal{B}_\mathcal{D} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi')$ where

- $\Sigma = \bigcup_{p \in \text{Proc}} \Sigma_p$
- $S = (\prod_{p \in \text{Proc}} S_p) \times 2^\Sigma$
- $X = \{z\} \cup \bigcup_{p \in \text{Proc}} X_p$
- $s_0 = ((s^p_0)_{p \in \text{Proc}}, \emptyset)$ and $F = (\prod_{p \in \text{Proc}} F_p) \times \{\emptyset\}$
- for $s = (s_p)_{p \in \text{Proc} \in \prod_{p \in \text{Proc}} S_p}$ and $A \subseteq \Sigma$ with $A \neq \emptyset$:

\[
\text{Inv}(s, \emptyset) = \bigwedge_{p \in \text{Proc}} \text{Inv}_p(s_p)
\]

\[
\text{Inv}(s, A) = z \leq 0 \land \bigwedge_{p \in \text{Proc}} \text{Inv}_p(s_p)
\]
Semantics of DTA \mathcal{D} (formally)

Definition: Semantics of DTA

Let $\mathcal{D} = (\langle A_p \rangle_{p \in \text{Proc}}, \pi)$ be a DTA where $A_p = (S_p, \Sigma_p, X_p, T_p, \text{Inv}_p, s^p_0, F_p)$. We associate with \mathcal{D} the icTA $\mathcal{B}_D = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi')$ where

- $\Sigma = \bigcup_{p \in \text{Proc}} \Sigma_p$
- $S = (\prod_{p \in \text{Proc}} S_p) \times 2^\Sigma$
- $X = \{z\} \uplus \bigcup_{p \in \text{Proc}} X_p$
- $s_0 = ((s^p_0)_{p \in \text{Proc}}, \emptyset)$ and $F = (\prod_{p \in \text{Proc}} F_p) \times \{\emptyset\}$
- for $s = (s_p)_{p \in \text{Proc}} \in \prod_{p \in \text{Proc}} S_p$ and $A \subseteq \Sigma$ with $A \neq \emptyset$:
 \[
 \text{Inv}(s, \emptyset) = \bigwedge_{p \in \text{Proc}} \text{Inv}_p(s_p)
 \]
 \[
 \text{Inv}(s, A) = z \leq 0 \land \bigwedge_{p \in \text{Proc}} \text{Inv}_p(s_p)
 \]
- $\pi'(z)$ is any process, and π' restricted to $X \setminus \{z\}$ is just π
Semantics of DTA \mathcal{D} (formally)

Definition: (cntd.)

The transitions in $\mathcal{B}_\mathcal{D}$ are of two types:

(T1) $((s, \emptyset), \varepsilon, \varphi, R, (s', A)) \in T$

if there are $\emptyset \neq P \subseteq Proc$ and $(\tilde{s}_p, a_p, \varphi_p, R_p, \tilde{s}'_p) \in T_p, p \in P$, such that:

Definition:

- $L(\mathcal{D}, \tau) := L(\mathcal{B}_\mathcal{D}, \tau)$
- $L_\exists(\mathcal{D}) := L_\exists(\mathcal{B}_\mathcal{D})$
- $L_\forall(\mathcal{D}) := L_\forall(\mathcal{B}_\mathcal{D})$
Semantics of DTA \mathcal{D} (formally)

Definition: (cntd.)

The transitions in $\mathcal{B}_\mathcal{D}$ are of two types:

(T1) \(((s, \emptyset), \varepsilon, \varphi, R, (s', A)) \in T\)

if there are $\emptyset \neq P \subseteq \text{Proc}$ and \((\tilde{s}_p, a_p, \varphi_p, R_p, \tilde{s}'_p) \in T_p, p \in P\), such that:

- $s_p = \tilde{s}_p$ and $s'_p = \tilde{s}'_p$ for all $p \in P$

Definition:

- \(L(\mathcal{D}, \tau) := L(\mathcal{B}_\mathcal{D}, \tau)\)
- \(L_\exists(\mathcal{D}) := L_\exists(\mathcal{B}_\mathcal{D})\)
- \(L_\forall(\mathcal{D}) := L_\forall(\mathcal{B}_\mathcal{D})\)
Semantics of DTA \mathcal{D} (formally)

Definition: (cntd.)

The transitions in $\mathcal{B}_\mathcal{D}$ are of two types:

(T1) $((s, \emptyset), \varepsilon, \varphi, R, (s', A)) \in T$

if there are $\emptyset \neq P \subseteq \text{Proc}$ and $(\tilde{s}_p, a_p, \varphi_p, R_p, \tilde{s}'_p) \in T_p$, $p \in P$, such that:

- $s_p = \tilde{s}_p$ and $s'_p = \tilde{s}'_p$ for all $p \in P$
- $s_q = s'_q$ for all $q \in \text{Proc} \setminus P$

Definition:

- $L(\mathcal{D}, \tau) := L(\mathcal{B}_\mathcal{D}, \tau)$
- $L_\exists(\mathcal{D}) := L_\exists(\mathcal{B}_\mathcal{D})$
- $L_\forall(\mathcal{D}) := L_\forall(\mathcal{B}_\mathcal{D})$
Definition: (cntd.)

The transitions in $B_{\mathcal{D}}$ are of two types:

(T1) $((s, \emptyset), \varepsilon, \varphi, R, (s', A)) \in T$

if there are $\emptyset \neq P \subseteq \mathit{Proc}$ and $(\tilde{s}_p, a_p, \varphi_p, R_p, \tilde{s}'_p) \in T_p$, $p \in P$, such that:

- $s_p = \tilde{s}_p$ and $s'_p = \tilde{s}'_p$ for all $p \in P$
- $s_q = s'_q$ for all $q \in \mathit{Proc} \setminus P$
- $\varphi = \bigwedge_{p \in P} \varphi_p$, $R = \bigcup_{p \in P} R_p \cup \{z\}$, and $A = \{a_p \mid p \in P\} \setminus \{\varepsilon\}$

Definition:

- $L(\mathcal{D}, \tau) := L(B_{\mathcal{D}}, \tau)$
- $L_{\exists}(\mathcal{D}) := L_{\exists}(B_{\mathcal{D}})$
- $L_{\forall}(\mathcal{D}) := L_{\forall}(B_{\mathcal{D}})$
Semantics of DTA \mathcal{D} (formally)

Definition: (cntd.)

The transitions in $\mathcal{B}_\mathcal{D}$ are of two types:

(T1) \(((s, \emptyset), \varepsilon, \varphi, R, (s', A)) \in T\)**

if there are $\emptyset \neq P \subseteq \text{Proc}$ and $((\tilde{s}_p, a_p, \varphi_p, R_p, \tilde{s}'_p)) \in T_p$, $p \in P$, such that:

- $s_p = \tilde{s}_p$ and $s'_p = \tilde{s}'_p$ for all $p \in P$
- $s_q = s'_q$ for all $q \in \text{Proc} \setminus P$
- $\varphi = \bigwedge_{p \in P} \varphi_p$, $R = \bigcup_{p \in P} R_p \cup \{z\}$, and $A = \{a_p \mid p \in P\} \setminus \{\varepsilon\}$

(T2) \(((s, A), a, \text{true}, \emptyset, (s, A \setminus \{a\})) \in T\)**

for all $s \in \prod_{p \in \text{Proc}} S_p$, $A \subseteq \Sigma$, and $a \in A$

Definition:

- $L(\mathcal{D}, \tau) := L(\mathcal{B}_\mathcal{D}, \tau)$
- $L_\exists(\mathcal{D}) := L_\exists(\mathcal{B}_\mathcal{D})$
- $L_\forall(\mathcal{D}) := L_\forall(\mathcal{B}_\mathcal{D})$
Example: DTA D with $\pi(x) = p$ and $\pi(y) = q$

A_p:

1. $s_0 \xrightarrow{y \leq 1, a} s_1 \xrightarrow{a, x:=0} s_2$

A_q:

1. $r_0 \xrightarrow{x \geq 1, b} r_1 \xrightarrow{y \leq 1} r_2 \xrightarrow{0 < x < 1, b}$
Semantics of DTA

Example: DTA \mathcal{D} with $\pi(x) = p$ and $\pi(y) = q$

A_p:
$s_0 \xrightarrow{y \leq 1, a} s_1 \xrightarrow{a, x:=0} s_2$

A_q:
$r_0 \xrightarrow{x \geq 1, b} r_1 \xrightarrow{y \leq 1} 0 < x < 1, b \xrightarrow{r_2}$

- if $\tau_p > \tau_q$, then $L(\mathcal{D}, \tau) = \{aa, abab, baab\}$
Semantics of DTA

Example: DTA \(\mathcal{D} \) with \(\pi(x) = p \) and \(\pi(y) = q \)

\[A_p: \quad s_0 \xrightarrow{y \leq 1, a} s_1 \xrightarrow{a, x := 0} s_2 \]

\[A_q: \quad r_0 \xrightarrow{x \geq 1, b} r_1 \xrightarrow{0 < x < 1, b} r_2 \]

- If \(\tau_p > \tau_q \), then \(L(\mathcal{D}, \tau) = \{aa, abab, baab\} \)
- If \(\tau_p = \tau_q \), then \(L(\mathcal{D}, \tau) = \{aa\} \)
Semantics of DTA

Example: DTA \mathcal{D} with $\pi(x) = p$ and $\pi(y) = q$

$A_p: \quad \xrightarrow{y \leq 1, a} s_1 \xrightarrow{a, x:=0} s_2$

$A_q: \quad \xrightarrow{x \geq 1, b} r_1 \xrightarrow{0 < x < 1, b} r_2$

- if $\tau_p > \tau_q$, then $L(\mathcal{D}, \tau) = \{aa, abab, baab\}$
- if $\tau_p = \tau_q$, then $L(\mathcal{D}, \tau) = \{aa\}$
- $L_{\exists}(\mathcal{D}) = \{aa, abab, baab\}$
Semantics of DTA

Example: DTA \mathcal{D} with $\pi(x) = p$ and $\pi(y) = q$

$A_p: \quad \begin{array}{c}
\quad s_0 \xrightarrow{y \leq 1, a} s_1 \xrightarrow{a, x:=0} s_2
\end{array}$

$A_q: \quad \begin{array}{c}
\quad r_0 \xrightarrow{x \geq 1, b} r_1 \xrightarrow{y \leq 1} r_2 \xrightarrow{0 < x < 1, b}
\end{array}$

- if $\tau_p > \tau_q$, then $L(\mathcal{D}, \tau) = \{aa, abab, baab\}$
- if $\tau_p = \tau_q$, then $L(\mathcal{D}, \tau) = \{aa\}$
- $L_{\exists}(\mathcal{D}) = \{aa, abab, baab\}$
- $L_{\forall}(\mathcal{D}) = \{aa\}$
Semantics of DTA

Example: DTA \(\mathcal{D} \) with \(\pi(x) = p \) and \(\pi(y) = q \)

\[\begin{align*}
A_p: \quad & s_0 \xrightarrow{y \leq 1, a} s_1 \xrightarrow{a, x:=0} s_2 \\
A_q: \quad & r_0 \xrightarrow{x \geq 1, b} r_1 \xrightarrow{y \leq 1} r_2 \xrightarrow{0 < x < 1, b} r_2
\end{align*}\]

- if \(\tau_p > \tau_q \), then \(L(\mathcal{D}, \tau) = \{aa, abab, baab\} \)
- if \(\tau_p = \tau_q \), then \(L(\mathcal{D}, \tau) = \{aa\} \)
- \(L_\exists(\mathcal{D}) = \{aa, abab, baab\} \)
- \(L_\forall(\mathcal{D}) = \{aa\} \)
Semantics of DTA

Example: DTA \mathcal{D} with $\pi(x) = p$ and $\pi(y) = q$

A_p:

- $s_0 \xrightarrow{y \leq 1, a} s_1$
- $s_1 \xrightarrow{a, x:=0} s_2$

A_q:

- $r_0 \xrightarrow{x \geq 1, b} r_1$
- $r_1 \xrightarrow{y \leq 1} r_2$
- $r_1 \xrightarrow{0 < x < 1, b} r_2$

- if $\tau_p > \tau_q$, then $L(\mathcal{D}, \tau) = \{aa, abab, baab\}$
- if $\tau_p = \tau_q$, then $L(\mathcal{D}, \tau) = \{aa\}$
- $L_\exists(\mathcal{D}) = \{aa, abab, baab\}$
- $L_\forall(\mathcal{D}) = \{aa\}$

Exercise:

Let $\text{Proc} = \{p, q\}$. Show that, for every regular language $L \subseteq \{a, b\}^*$, there is a DTA $\mathcal{D} = ((A_p, A_q), \pi)$ with $A_p = (S_p, \{a\}, X_p, T_p, \text{Inv}_p, s^p_0, F_p)$ and $A_q = (S_q, \{b\}, X_q, T_q, \text{Inv}_q, s^q_0, F_q)$ such that $L_\exists(\mathcal{D}) = L_\forall(\mathcal{D}) = L$. Note that you may choose the sets of clocks and π freely.
Distributed Timed Automata

The Model

- Existential Semantics and Region Abstraction
- Universal Semantics and Undecidability
- Reactive Semantics

Summary

Message Sequence Charts with Timing Constraints (TC-MSCs)

Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints
Timed Channel Systems

Time(d) Petri Nets

Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Existential semantics is regular

Goal:
Transform icTA B into finite automaton recognizing the existential semantics of B.
Existential semantics is regular

Goal:

Transform icTA B into finite automaton recognizing the existential semantics of B.

We proceed in two steps:

1. We define an (infinite, untimed) automaton/transition system $TS(B)$ over the alphabet of B such that $L(TS(B)) = L_\exists(B)$.
Existential semantics is regular

Goal:
Transform icTA B into finite automaton recognizing the existential semantics of B.

We proceed in two steps:

1. We define an (infinite, untimed) automaton/transition system $TS(B)$ over the alphabet of B such that $L(TS(B)) = L_\exists(B)$.

2. We define a bisimulation equivalence relation \sim on the set of states of $TS(B)$ such that:
Existential semantics is regular

Goal:
Transform icTA \mathcal{B} into finite automaton recognizing the existential semantics of \mathcal{B}.

We proceed in two steps:

1. We define an (infinite, untimed) automaton/transition system $TS(\mathcal{B})$ over the alphabet of \mathcal{B} such that $L(TS(\mathcal{B})) = L_\exists(\mathcal{B})$.

2. We define a bisimulation equivalence relation \sim on the set of states of $TS(\mathcal{B})$ such that:
 - \sim has finite index (finitely many equivalence classes)
Existential semantics is regular

Goal:

Transform icTA \mathcal{B} into finite automaton recognizing the existential semantics of \mathcal{B}.

We proceed in two steps:

1. We define an (infinite, untimed) automaton/transition system $TS(\mathcal{B})$ over the alphabet of \mathcal{B} such that $L(TS(\mathcal{B})) = L_\exists(\mathcal{B})$.

2. We define a bisimulation equivalence relation \sim on the set of states of $TS(\mathcal{B})$ such that:
 - \sim has finite index (finitely many equivalence classes)
 - $L(TS(\mathcal{B})/\sim) = L(TS(\mathcal{B}))$
Existential semantics is regular

Goal:
Transform icTA \mathcal{B} into finite automaton recognizing the existential semantics of \mathcal{B}.

We proceed in two steps:

1. We define an (infinite, untimed) automaton/transition system $TS(\mathcal{B})$ over the alphabet of \mathcal{B} such that $L(TS(\mathcal{B})) = L_\exists(\mathcal{B})$.

2. We define a bisimulation equivalence relation \sim on the set of states of $TS(\mathcal{B})$ such that:
 - \sim has finite index (finitely many equivalence classes)
 - $L(TS(\mathcal{B})/\sim) = L(TS(\mathcal{B}))$

As $TS(\mathcal{B})/\sim$ is a finite automaton, $L_\exists(\mathcal{B})$ is indeed regular. Moreover, the construction of $TS(\mathcal{B})/\sim$ is effective.
Step 1: The infinite transition system

We define the transition system $\mathcal{TS}(\mathcal{B})$ for icTA $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$:

- states: pairs (s, ν) where $s \in S$ and $\nu : X \rightarrow \mathbb{R}_{\geq 0}$
Step 1: The infinite transition system

We define the transition system $TS(\mathcal{B})$ for icTA $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$:

- states: pairs (s, ν) where $s \in S$ and $\nu : X \rightarrow \mathbb{R}_{\geq 0}$
- initial state: (s_0, ν_0) with $\nu_0(x) = 0$ for all $x \in X$
Step 1: The infinite transition system

We define the transition system $TS(B)$ for icTA $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$:

- states: pairs (s, ν) where $s \in S$ and $\nu : X \to \mathbb{R}_{\geq 0}$
- initial state: (s_0, ν_0) with $\nu_0(x) = 0$ for all $x \in X$
- final states: states (s, ν) such that $s \in F$
Step 1: The infinite transition system

We define the transition system $TS(B)$ for icTA $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$:

- states: pairs (s, ν) where $s \in S$ and $\nu : X \to \mathbb{R}_{\geq 0}$
- initial state: (s_0, ν_0) with $\nu_0(x) = 0$ for all $x \in X$
- final states: states (s, ν) such that $s \in F$

Then, for $a \in \Sigma_{\epsilon}$, $(s, \nu) \xrightarrow{a} (s', \nu')$ is a transition in $TS(B)$ if there exist $t \in \mathbb{R}_{\geq 0}$, $\tau \in \text{Rates}$, $\varphi \in \text{Constr}(X)$, and $R \subseteq X$ such that:
Step 1: The infinite transition system

We define the transition system $TS(B)$ for icTA $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$:

- states: pairs (s, ν) where $s \in S$ and $\nu : X \rightarrow \mathbb{R}_{\geq 0}$
- initial state: (s_0, ν_0) with $\nu_0(x) = 0$ for all $x \in X$
- final states: states (s, ν) such that $s \in F$

Then, for $a \in \Sigma_\varepsilon$, $(s, \nu) \xrightarrow{a} (s', \nu')$ is a transition in $TS(B)$ if there exist $t \in \mathbb{R}_{\geq 0}$, $\tau \in \text{Rates}$, $\varphi \in \text{Constr}(X)$, and $R \subseteq X$ such that:

- $(s, a, \varphi, R, s') \in T$
Step 1: The infinite transition system

We define the transition system $TS(B)$ for icTA $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$:

- states: pairs (s, ν) where $s \in S$ and $\nu : X \to \mathbb{R}_{\geq 0}$
- initial state: (s_0, ν_0) with $\nu_0(x) = 0$ for all $x \in X$
- final states: states (s, ν) such that $s \in F$

Then, for $a \in \Sigma_\varepsilon$, $(s, \nu) \xrightarrow{a} (s', \nu')$ is a transition in $TS(B)$ if there exist $t \in \mathbb{R}_{\geq 0}$, $\tau \in \text{Rates}$, $\varphi \in \text{Constr}(X)$, and $R \subseteq X$ such that:

- $(s, a, \varphi, R, s') \in T$
- $\nu + \tau(t) \models \varphi$
Step 1: The infinite transition system

We define the transition system $TS(B)$ for icTA $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$:

- states: pairs (s, ν) where $s \in S$ and $\nu : X \rightarrow \mathbb{R}_{\geq 0}$
- initial state: (s_0, ν_0) with $\nu_0(x) = 0$ for all $x \in X$
- final states: states (s, ν) such that $s \in F$

Then, for $a \in \Sigma_\varepsilon$, $(s, \nu) \xrightarrow{a} (s', \nu')$ is a transition in $TS(B)$ if there exist $t \in \mathbb{R}_{\geq 0}$, $\tau \in \text{Rates}$, $\varphi \in \text{Constr}(X)$, and $R \subseteq X$ such that:

- $(s, a, \varphi, R, s') \in T$
- $\nu + \tau(t) \models \varphi$
- $\nu + \tau(t') \models \text{Inv}(s)$ for each $t' \in [0, t]$
Step 1: The infinite transition system

We define the transition system $TS(B)$ for icTA $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$:

- **states**: pairs (s, ν) where $s \in S$ and $\nu : X \to \mathbb{R}_{\geq 0}$
- **initial state**: (s_0, ν_0) with $\nu_0(x) = 0$ for all $x \in X$
- **final states**: states (s, ν) such that $s \in F$

Then, for $a \in \Sigma_\epsilon$, $(s, \nu) \xrightarrow{a} (s', \nu')$ is a transition in $TS(B)$ if there exist $t \in \mathbb{R}_{\geq 0}$, $\tau \in \text{Rates}$, $\varphi \in \text{Constr}(X)$, and $R \subseteq X$ such that:

- $(s, a, \varphi, R, s') \in T$
- $\nu + \tau(t) \models \varphi$
- $\nu + \tau(t') \models \text{Inv}(s)$ for each $t' \in [0, t]$
- $\nu' = (\nu + \tau(t))[R \leftarrow 0]$
Step 1: The infinite transition system

We define the transition system $TS(B)$ for icTA $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$:

- **states**: pairs (s, ν) where $s \in S$ and $\nu : X \rightarrow \mathbb{R}_{\geq 0}$
- **initial state**: (s_0, ν_0) with $\nu_0(x) = 0$ for all $x \in X$
- **final states**: states (s, ν) such that $s \in F$

Then, for $a \in \Sigma_{\varepsilon}$, $(s, \nu) \xrightarrow{a} (s', \nu')$ is a transition in $TS(B)$ if there exist $t \in \mathbb{R}_{\geq 0}$, $\tau \in Rates$, $\varphi \in \text{Constr}(X)$, and $R \subseteq X$ such that:

- $(s, a, \varphi, R, s') \in T$
- $\nu + \tau(t) \models \varphi$
- $\nu + \tau(t') \models \text{Inv}(s)$ for each $t' \in [0, t]$
- $\nu' = (\nu + \tau(t))[R \leftarrow 0]$
- $\nu' \models \text{Inv}(s')$
Step 1: The infinite transition system

We define the transition system $TS(B)$ for icTA $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$:

- **states**: pairs (s, ν) where $s \in S$ and $\nu : X \to \mathbb{R}_{\geq 0}$
- **initial state**: (s_0, ν_0) with $\nu_0(x) = 0$ for all $x \in X$
- **final states**: states (s, ν) such that $s \in F$

Then, for $a \in \Sigma_\epsilon$, $(s, \nu) \xrightarrow{a} (s', \nu')$ is a transition in $TS(B)$ if there exist $t \in \mathbb{R}_{\geq 0}$, $\tau \in \text{Rates}$, $\varphi \in \text{Constr}(X)$, and $R \subseteq X$ such that:

- $(s, a, \varphi, R, s') \in T$
- $\nu + \tau(t) \models \varphi$
- $\nu + \tau(t') \models \text{Inv}(s)$ for each $t' \in [0, t]$
- $\nu' = (\nu + \tau(t))[R \leftarrow 0]$
- $\nu' \models \text{Inv}(s')$

The language $w \in L(TS(B)) \subseteq \Sigma^*$ of $TS(B)$ is defined as expected.
Step 1: The infinite transition system

Lemma:

\[L(TS(\mathcal{B})) = L_\exists(\mathcal{B}) \]
Step 1: The infinite transition system

Lemma:

\[L(TS(B)) = L_\exists(B) \]

Exercise:

Proof of \(\supseteq \). (\(\tau \)-run \(\rightsquigarrow \) abstract away \(t_i \) \(\rightsquigarrow \) accepting run of \(TS(B) \))
Step 1: The infinite transition system

Lemma:
\[L(TS(B)) = L_\exists(B) \]

Exercise:
Proof of \(\supseteq \). (\(\tau \)-run \(\rightsquigarrow \) abstract away \(t_i \) \(\rightsquigarrow \) accepting run of \(TS(B) \))

Proof of \(\subseteq \).
Let \(w \in L(TS(B)) \) and let
\[
(s_0, \nu_0) \xrightarrow{a_1} (s_1, \nu_1) \xrightarrow{a_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n} (s_n, \nu_n)
\]
be an accepting run of \(TS(B) \) for \(w = a_1 \cdots a_n \).
Step 1: The infinite transition system

Lemma:

\[L(TS(B)) = L_\exists(B) \]

Exercise:

Proof of \(\supseteq \). (\(\tau \)-run \(\rightsquigarrow \) abstract away \(t_i \) \(\rightsquigarrow \) accepting run of \(TS(B) \))

Proof of \(\subseteq \).
Let \(w \in L(TS(B)) \) and let

\[(s_0, \nu_0) \xrightarrow{a_1} (s_1, \nu_1) \xrightarrow{a_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n} (s_n, \nu_n) \]

be an accepting run of \(TS(B) \) for \(w = a_1 \cdot \ldots \cdot a_n \). By definition, for each \(1 \leq i \leq n \), we find \(\hat{t}_i \geq 0, \tau_i, \varphi_i, \) and \(R_i \) such that:
Step 1: The infinite transition system

Lemma:
\[L(TS(B)) = L_{\exists}(B) \]

Exercise:
Proof of \(\supseteq \). (\(\tau \)-run \(\rightsquigarrow \) abstract away \(t_i \) \(\rightsquigarrow \) accepting run of \(TS(B) \))

Proof of \(\subseteq \).

Let \(w \in L(TS(B)) \) and let

\[
(s_0, \nu_0) \xrightarrow{a_1} (s_1, \nu_1) \xrightarrow{a_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n} (s_n, \nu_n)
\]

be an accepting run of \(TS(B) \) for \(w = a_1 \cdot \ldots \cdot a_n \). By definition, for each \(1 \leq i \leq n \), we find \(\hat{t}_i \geq 0 \), \(\tau_i \), \(\phi_i \), and \(R_i \) such that:

\begin{itemize}
 \item \((s_{i-1}, a_i, \phi_i, R_i, s_i) \in T \)
 \item \(\nu_{i-1} + \tau_i(\hat{t}_i) \models \phi_i \)
 \item \(\nu_{i-1} + \tau_i(t') \models \text{Inv}(s_{i-1}) \) for each \(t' \in [0, \hat{t}_i] \)
 \item \(\nu_i = (\nu_{i-1} + \tau_i(\hat{t}_i))[R_i \leftarrow 0] \)
 \item \(\nu_i \models \text{Inv}(s_i) \)
\end{itemize}
Step 1: The infinite transition system

Lemma:

\[L(TS(B)) = L_\exists(B) \]
Step 1: The infinite transition system

Lemma:
\[L(TS(B)) = L_\exists(B) \]

Proof (cntd.) of \(\subseteq \).

Towards a \(\tau \)-run of \(B \), we define by induction the non-decreasing sequence \(t_0, t_1, \ldots, t_n \) by \(t_0 = 0 \) and \(t_i = t_{i-1} + \hat{t}_i \) for \(1 \leq i \leq n \).
Step 1: The infinite transition system

Lemma:

\[L(TS(B)) = L_\exists(B) \]

Proof (cntd.) of \(\subseteq \).

Towards a \(\tau \)-run of \(B \), we define by induction the non-decreasing sequence \(t_0, t_1, \ldots, t_n \) by \(t_0 = 0 \) and \(t_i = t_{i-1} + \hat{t}_i \) for \(1 \leq i \leq n \).

We also define \(\tau \) in order to obtain a \(\tau \)-run of \(B \):
Step 1: The infinite transition system

Lemma:

\[L(TS(B)) = L_\exists(B) \]

Proof (cntd.) of \(\subseteq \).

Towards a \(\tau \)-run of \(B \), we define by induction the non-decreasing sequence \(t_0, t_1, \ldots, t_n \) by \(t_0 = 0 \) and \(t_i = t_{i-1} + \hat{t}_i \) for \(1 \leq i \leq n \).

We also define \(\tau \) in order to obtain a \(\tau \)-run of \(B \):

\[
\tau(t) = \begin{cases}
\tau(t_{i-1}) + \tau_i(t - t_{i-1}) & \text{if } t \in [t_{i-1}, t_i] \\
\tau(t_n) + \text{id}(t - t_n) & \text{if } t \geq t_n
\end{cases}
\]
Step 1: The infinite transition system

Lemma:

\[L(TS(B)) = L_\exists(B) \]

Proof (cntd.) of \(\subseteq \).

Towards a \(\tau \)-run of \(B \), we define by induction the non-decreasing sequence \(t_0, t_1, \ldots, t_n \) by \(t_0 = 0 \) and \(t_i = t_{i-1} + \hat{t}_i \) for \(1 \leq i \leq n \).

We also define \(\tau \) in order to obtain a \(\tau \)-run of \(B \):

\[
\tau(t) = \begin{cases}
\tau(t_{i-1}) + \tau_i(t - t_{i-1}) & \text{if } t \in [t_{i-1}, t_i] \\
\tau(t_n) + \text{id}(t - t_n) & \text{if } t \geq t_n
\end{cases}
\]

Then, we can check:

\[(s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T \]
Step 1: The infinite transition system

Lemma:
\[L(TS(B)) = L_\exists(B) \]

Proof (cntd.) of \(\subseteq \).

Towards a \(\tau \)-run of \(B \), we define by induction the non-decreasing sequence \(t_0, t_1, \ldots, t_n \) by \(t_0 = 0 \) and \(t_i = t_{i-1} + \hat{t}_i \) for \(1 \leq i \leq n \).

We also define \(\tau \) in order to obtain a \(\tau \)-run of \(B \):

\[
\tau(t) = \begin{cases}
\tau(t_{i-1}) + \tau_i(t - t_{i-1}) & \text{if } t \in [t_{i-1}, t_i] \\
\tau(t_n) + \text{id}(t - t_n) & \text{if } t \geq t_n
\end{cases}
\]

Then, we can check:

- \((s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T \)
- \(\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) \models \varphi_i \)
Step 1: The infinite transition system

Lemma:

\[L(TS(B)) = L_\exists(B) \]

Proof (cntd.) of \(\subseteq \).

Towards a \(\tau \)-run of \(B \), we define by induction the non-decreasing sequence \(t_0, t_1, \ldots, t_n \) by \(t_0 = 0 \) and \(t_i = t_{i-1} + \hat{t}_i \) for \(1 \leq i \leq n \).

We also define \(\tau \) in order to obtain a \(\tau \)-run of \(B \):

\[
\tau(t) = \begin{cases}
\tau(t_{i-1}) + \tau_i(t - t_{i-1}) & \text{if } t \in [t_{i-1}, t_i] \\
\tau(t_n) + \text{id}(t - t_n) & \text{if } t \geq t_n
\end{cases}
\]

Then, we can check:

- \((s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T\)
- \(\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) \models \varphi_i\)
- \(\nu_{i-1} + \tau(t') - \tau(t_{i-1}) \models \text{Inv}(s_{i-1})\) for each \(t' \in [t_{i-1}, t_i] \)
Step 1: The infinite transition system

Lemma:

\[L(TS(B)) = L_{\exists}(B) \]

Proof (cntd.) of \(\subseteq \).

Towards a \(\tau \)-run of \(B \), we define by induction the non-decreasing sequence \(t_0, t_1, \ldots, t_n \) by \(t_0 = 0 \) and \(t_i = t_{i-1} + \hat{t}_i \) for \(1 \leq i \leq n \).

We also define \(\tau \) in order to obtain a \(\tau \)-run of \(B \):

\[
\tau(t) = \begin{cases}
\tau(t_{i-1}) + \tau_i(t - t_{i-1}) & \text{if } t \in [t_{i-1}, t_i] \\
\tau(t_n) + \id(t - t_n) & \text{if } t \geq t_n
\end{cases}
\]

Then, we can check:

\begin{itemize}
 \item \((s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T \)
 \item \(\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) \models \varphi_i \)
 \item \(\nu_{i-1} + \tau(t') - \tau(t_{i-1}) \models \inv(s_{i-1}) \) for each \(t' \in [t_{i-1}, t_i] \)
 \item \(\nu_{i-1} + \tau_i(t') \models \inv(s_{i-1}) \) for each \(t' \in [0, \hat{t}_i] \)
\end{itemize}
Step 1: The infinite transition system

Lemma:

\[L(TS(B)) = L_\exists(B) \]

Proof (cntd.) of \(\subseteq \).

Towards a \(\tau \)-run of \(B \), we define by induction the non-decreasing sequence \(t_0, t_1, \ldots, t_n \) by \(t_0 = 0 \) and \(t_i = t_{i-1} + \hat{t}_i \) for \(1 \leq i \leq n \).

We also define \(\tau \) in order to obtain a \(\tau \)-run of \(B \):

\[
\tau(t) = \begin{cases}
\tau(t_{i-1}) + \tau_i(t - t_{i-1}) & \text{if } t \in [t_{i-1}, t_i] \\
\tau(t_n) + \text{id}(t - t_n) & \text{if } t \geq t_n
\end{cases}
\]

Then, we can check:

- \((s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T\)
- \(\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) \models \varphi_i\)
- \(\nu_{i-1} + \tau(t') - \tau(t_{i-1}) \models \text{Inv}(s_{i-1})\) for each \(t' \in [t_{i-1}, t_i] \)
- \(\nu_{i-1} + \tau_i(t') \models \text{Inv}(s_{i-1})\) for each \(t' \in [0, \hat{t}_i] \)
- \(\nu_i = (\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}))[R_i \leftarrow 0]\)
Step 1: The infinite transition system

Lemma:

\[L(TS(B)) = L_{\exists}(B) \]

Proof (cntd.) of \(\subseteq \).

Towards a \(\tau \)-run of \(B \), we define by induction the non-decreasing sequence \(t_0, t_1, \ldots, t_n \) by \(t_0 = 0 \) and \(t_i = t_{i-1} + \hat{t}_i \) for \(1 \leq i \leq n \).

We also define \(\tau \) in order to obtain a \(\tau \)-run of \(B \):

\[
\tau(t) = \begin{cases}
\tau(t_{i-1}) + \tau_i(t - t_{i-1}) & \text{if } t \in [t_{i-1}, t_i] \\
\tau(t_n) + \text{id}(t - t_n) & \text{if } t \geq t_n
\end{cases}
\]

Then, we can check:

\[(s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T \]
\[\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) \models \varphi_i \]
\[\nu_{i-1} + \tau(t') - \tau(t_{i-1}) \models \text{Inv}(s_{i-1}) \quad \text{for each } t' \in [t_{i-1}, t_i] \]
\[\nu_{i-1} + \tau_i(t') \models \text{Inv}(s_{i-1}) \quad \text{for each } t' \in [0, \hat{t}_i] \]
\[\nu_i = (\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}))[R_i \leftarrow 0] \]
\[\nu_i \models \text{Inv}(s_i) \]
Step 1: The infinite transition system

Lemma:

\[L(TS(B)) = L_{\exists}(B) \]

Proof (cntd.) of \(\subseteq \).

Towards a \(\tau \)-run of \(B \), we define by induction the non-decreasing sequence \(t_0, t_1, \ldots, t_n \) by \(t_0 = 0 \) and \(t_i = t_{i-1} + \hat{t}_i \) for \(1 \leq i \leq n \).

We also define \(\tau \) in order to obtain a \(\tau \)-run of \(B \):

\[
\tau(t) = \begin{cases}
\tau(t_{i-1}) + \tau_i(t - t_{i-1}) & \text{if } t \in [t_{i-1}, t_i] \\
\tau(t_n) + \text{id}(t - t_n) & \text{if } t \geq t_n
\end{cases}
\]

Then, we can check:

\begin{itemize}
 \item \((s_{i-1}, a_i, \varphi_i, R_i, s_i) \in T\)
 \item \(\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) \models \varphi_i\)
 \item \(\nu_{i-1} + \tau(t') - \tau(t_{i-1}) \models \text{Inv}(s_{i-1})\) for each \(t' \in [t_{i-1}, t_i] \)
 \item \(\nu_{i-1} + \tau_i(t') \models \text{Inv}(s_{i-1})\) for each \(t' \in [0, \hat{t}_i] \)
 \item \(\nu_i = (\nu_{i-1} + \tau(t_i) - \tau(t_{i-1}))[R_i \leftarrow 0]\)
 \item \(\nu_i \models \text{Inv}(s_i)\)
\end{itemize}

Therefore, \((s_0, \nu_0) \xrightarrow{a_1,t_1} (s_1, \nu_1) \xrightarrow{a_2,t_2} (s_2, \nu_2) \cdots (s_{n-1}, \nu_{n-1}) \xrightarrow{a_n,t_n} (s_n, \nu_n)\) is an accepting \(\tau \)-run of \(B \).
Step 2: The bisimulation relation

Next, we define a bisimulation relation on $TS(B)$ that has finite index and preserves final states. We obtain as a quotient a finite automaton accepting $L(TS(B)) = L_\exists(B)$.
Step 2: The bisimulation relation

Next, we define a bisimulation relation on $TS(B)$ that has finite index and preserves final states. We obtain as a quotient a finite automaton accepting $L(TS(B)) = L_\exists(B)$.

Idea:

Bisimulation is based on clock regions; consider two clock valuations to be equivalent if they are p-equivalent for every process p. In turn, p-equivalence is just the usual region equivalence for classical timed automata.
Step 2: The bisimulation relation

Next, we define a bisimulation relation on $TS(B)$ that has finite index and preserves final states. We obtain as a quotient a finite automaton accepting $L(TS(B)) = L_{\exists}(B)$.

Idea:

Bisimulation is based on clock regions; consider two clock valuations to be equivalent if they are p-equivalent for every process p. In turn, p-equivalence is just the usual region equivalence for classical timed automata.

Regions when $\pi(x) = \pi(y)$

Regions when $\pi(x) \neq \pi(y)$
Step 2: The bisimulation relation
For each clock $x \in X$, let C_x be the largest constant clock x is compared with in guards or invariants.
Step 2: The bisimulation relation
For each clock $x \in X$, let C_x be the largest constant clock x is compared with in guards or invariants. Let $p \in \text{Proc}$. Given a clock valuation ν over X, define its p-restriction $\nu_p : \pi^{-1}(p) \to \mathbb{R}_{\geq 0}$ by $\nu_p(x) = \nu(x)$ for all $x \in \pi^{-1}(p)$.
Step 2: The bisimulation relation

For each clock $x \in X$, let C_x be the largest constant clock x is compared with in guards or invariants. Let $p \in \text{Proc}$. Given a clock valuation ν over X, define its p-restriction $\nu_p : \pi^{-1}(p) \rightarrow \mathbb{R}_{\geq 0}$ by $\nu_p(x) = \nu(x)$ for all $x \in \pi^{-1}(p)$.

As in the classical region construction for timed automata, we obtain a notion of equivalence \sim_p between two such valuations: $\nu_p \sim_p \nu'_p$ if the following hold:
Step 2: The bisimulation relation

For each clock \(x \in X \), let \(C_x \) be the largest constant clock \(x \) is compared with in guards or invariants. Let \(p \in \text{Proc} \). Given a clock valuation \(\nu \) over \(X \), define its \(p \)-restriction \(\nu_p : \pi^{-1}(p) \to \mathbb{R}_{\geq 0} \) by \(\nu_p(x) = \nu(x) \) for all \(x \in \pi^{-1}(p) \).

As in the classical region construction for timed automata, we obtain a notion of equivalence \(\sim_p \) between two such valuations: \(\nu_p \sim_p \nu'_p \) if the following hold:

1. for each \(x \in \pi^{-1}(p) \), \(\nu_p(x) > C_x \) if and only if \(\nu'_p(x) > C_x \)
Step 2: The bisimulation relation

For each clock \(x \in X \), let \(C_x \) be the largest constant clock \(x \) is compared with in guards or invariants. Let \(p \in \text{Proc} \). Given a clock valuation \(\nu \) over \(X \), define its \(p \)-restriction \(\nu_p : \pi^{-1}(p) \to \mathbb{R}_{\geq 0} \) by \(\nu_p(x) = \nu(x) \) for all \(x \in \pi^{-1}(p) \).

As in the classical region construction for timed automata, we obtain a notion of equivalence \(\sim_p \) between two such valuations: \(\nu_p \sim_p \nu'_p \) if the following hold:

1. for each \(x \in \pi^{-1}(p) \), \(\nu_p(x) > C_x \) if and only if \(\nu'_p(x) > C_x \)
2. for each \(x \in \pi^{-1}(p) \), \(\nu_p(x) \leq C_x \) implies both \(\lfloor \nu_p(x) \rfloor = \lfloor \nu'_p(x) \rfloor \) and \(\text{fract}(\nu_p(x)) = 0 \) iff \(\text{fract}(\nu'_p(x)) = 0 \)
Step 2: The bisimulation relation

For each clock \(x \in X \), let \(C_x \) be the largest constant clock \(x \) is compared with in guards or invariants. Let \(p \in \text{Proc} \). Given a clock valuation \(\nu \) over \(X \), define its \(p \)-restriction \(\nu_p : \pi^{-1}(p) \to \mathbb{R}_{\geq 0} \) by \(\nu_p(x) = \nu(x) \) for all \(x \in \pi^{-1}(p) \).

As in the classical region construction for timed automata, we obtain a notion of equivalence \(\sim_p \) between two such valuations: \(\nu_p \sim_p \nu'_p \) if the following hold:

1. for each \(x \in \pi^{-1}(p) \), \(\nu_p(x) > C_x \) if and only if \(\nu'_p(x) > C_x \)
2. for each \(x \in \pi^{-1}(p) \), \(\nu_p(x) \leq C_x \) implies both \(\lfloor \nu_p(x) \rfloor = \lfloor \nu'_p(x) \rfloor \) and \(\text{fract}(\nu_p(x)) = 0 \) iff \(\text{fract}(\nu'_p(x)) = 0 \)
3. for each pair \(x, y \in \pi^{-1}(p) \) such that \(\nu_p(x) \leq C_x \) and \(\nu_p(y) \leq C_y \), we have \(\text{fract}(\nu_p(x)) \leq \text{fract}(\nu_p(y)) \) iff \(\text{fract}(\nu'_p(x)) \leq \text{fract}(\nu'_p(y)) \)
Step 2: The bisimulation relation

For each clock \(x \in X \), let \(C_x \) be the largest constant clock \(x \) is compared with in guards or invariants. Let \(p \in \text{Proc} \). Given a clock valuation \(\nu \) over \(X \), define its \(p \)-restriction \(\nu_p : \pi^{-1}(p) \to \mathbb{R}_{\geq 0} \) by \(\nu_p(x) = \nu(x) \) for all \(x \in \pi^{-1}(p) \).

As in the classical region construction for timed automata, we obtain a notion of equivalence \(\sim_p \) between two such valuations: \(\nu_p \sim_p \nu'_p \) if the following hold:

1. for each \(x \in \pi^{-1}(p) \), \(\nu_p(x) > C_x \) if and only if \(\nu'_p(x) > C_x \)
2. for each \(x \in \pi^{-1}(p) \), \(\nu_p(x) \leq C_x \) implies both \(\lfloor \nu_p(x) \rfloor = \lfloor \nu'_p(x) \rfloor \) and \(\text{fract}(\nu_p(x)) = 0 \) iff \(\text{fract}(\nu'_p(x)) = 0 \)
3. for each pair \(x, y \in \pi^{-1}(p) \) such that \(\nu_p(x) \leq C_x \) and \(\nu_p(y) \leq C_y \), we have \(\text{fract}(\nu_p(x)) \leq \text{fract}(\nu_p(y)) \) iff \(\text{fract}(\nu'_p(x)) \leq \text{fract}(\nu'_p(y)) \)

Remark:

From the result on timed automata, it follows that each \(\sim_p \) is an equivalence relation and also a time-abstract bisimulation, i.e, if \(\nu_p \sim_p \nu'_p \), then for all \(t \in \mathbb{R}_{>0} \), there exists \(t' \in \mathbb{R}_{>0} \) such that \(\nu_p + t \sim \nu'_p + t' \).
Step 2: The bisimulation relation

For each clock $x \in X$, let C_x be the largest constant clock x is compared with in guards or invariants. Let $p \in \text{Proc}$. Given a clock valuation ν over X, define its p-restriction $\nu_p : \pi^{-1}(p) \to \mathbb{R}_{\geq 0}$ by $\nu_p(x) = \nu(x)$ for all $x \in \pi^{-1}(p)$.

As in the classical region construction for timed automata, we obtain a notion of equivalence \sim_p between two such valuations: $\nu_p \sim_p \nu_p'$ if the following hold:

1. for each $x \in \pi^{-1}(p)$, $\nu_p(x) > C_x$ if and only if $\nu_p'(x) > C_x$
2. for each $x \in \pi^{-1}(p)$, $\nu_p(x) \leq C_x$ implies both $\lfloor \nu_p(x) \rfloor = \lfloor \nu_p'(x) \rfloor$ and $\text{fract}(\nu_p(x)) = 0$ iff $\text{fract}(\nu_p'(x)) = 0$
3. for each pair $x, y \in \pi^{-1}(p)$ such that $\nu_p(x) \leq C_x$ and $\nu_p(y) \leq C_y$, we have $\text{fract}(\nu_p(x)) \leq \text{fract}(\nu_p(y))$ iff $\text{fract}(\nu_p'(x)) \leq \text{fract}(\nu_p'(y))$

Remark:

From the result on timed automata, it follows that each \sim_p is an equivalence relation and also a time-abstract bisimulation, i.e, if $\nu_p \sim_p \nu_p'$, then for all $t \in \mathbb{R}_{>0}$, there exists $t' \in \mathbb{R}_{>0}$ such that $\nu_p + t \sim \nu_p' + t'$.

Now, we say that two clock valuations ν and ν' over X are equivalent, denoted $\nu \sim \nu'$, if $\nu_p \sim_p \nu_p'$ for all $p \in \text{Proc}$.
Step 2: The bisimulation relation

For each clock \(x \in X \), let \(C_x \) be the largest constant clock \(x \) is compared with in guards or invariants. Let \(p \in \text{Proc} \). Given a clock valuation \(\nu \) over \(X \), define its \(p \)-restriction \(\nu_p : \pi^{-1}(p) \rightarrow \mathbb{R}_{\geq 0} \) by \(\nu_p(x) = \nu(x) \) for all \(x \in \pi^{-1}(p) \).

As in the classical region construction for timed automata, we obtain a notion of equivalence \(\sim_p \) between two such valuations: \(\nu_p \sim_p \nu'_p \) if the following hold:

1. for each \(x \in \pi^{-1}(p) \), \(\nu_p(x) > C_x \) if and only if \(\nu'_p(x) > C_x \)
2. for each \(x \in \pi^{-1}(p) \), \(\nu_p(x) \leq C_x \) implies both \(\lfloor \nu_p(x) \rfloor = \lfloor \nu'_p(x) \rfloor \) and \(\text{fract}(\nu_p(x)) = 0 \) iff \(\text{fract}(\nu'_p(x)) = 0 \)
3. for each pair \(x, y \in \pi^{-1}(p) \) such that \(\nu_p(x) \leq C_x \) and \(\nu_p(y) \leq C_y \), we have \(\text{fract}(\nu_p(x)) \leq \text{fract}(\nu_p(y)) \) iff \(\text{fract}(\nu'_p(x)) \leq \text{fract}(\nu'_p(y)) \)

Remark:

From the result on timed automata, it follows that each \(\sim_p \) is an equivalence relation and also a time-abstract bisimulation, i.e, if \(\nu_p \sim_p \nu'_p \), then for all \(t \in \mathbb{R}_{>0} \), there exists \(t' \in \mathbb{R}_{>0} \) such that \(\nu_p + t \sim \nu'_p + t' \).

Now, we say that two clock valuations \(\nu \) and \(\nu' \) over \(X \) are equivalent, denoted \(\nu \sim \nu' \), if \(\nu_p \sim_p \nu'_p \) for all \(p \in \text{Proc} \). For valuation \(\nu \), let \([\nu] \sim \) (or, simply, \([\nu]\)) denote its equivalence class wrt. \(\sim \).
Step 2: The bisimulation relation

Lemma: Time-abstract bisimulation

If $\nu \sim \nu'$, then for all $t \in \mathbb{R}_{>0}^{Proc}$, there exists $t' \in \mathbb{R}_{>0}^{Proc}$ such that $\nu + t \sim \nu' + t'$.
Step 2: The bisimulation relation

Lemma: Time-abstract bisimulation

If \(\nu \sim \nu' \), then for all \(t \in \mathbb{R}_{>0}^{Proc} \), there exists \(t' \in \mathbb{R}_{>0}^{Proc} \) such that \(\nu + t \sim \nu' + t' \).

Exercise: Prove the lemma.
Step 2: The bisimulation relation

Lemma: Time-abstract bisimulation

If \(\nu \sim \nu' \), then for all \(t \in \mathbb{R}_{>0}^{Proc} \), there exists \(t' \in \mathbb{R}_{>0}^{Proc} \) such that \(\nu + t \sim \nu' + t' \).

Exercise:

Prove the lemma.

The equivalence \(\sim \) can be naturally extended to states of \(TS(B) \) by \((s, \nu) \sim (s', \nu')\) if \(s = s' \) and \(\nu \sim \nu' \).
Step 2: The bisimulation relation

Lemma: Time-abstract bisimulation

If $\nu \sim \nu'$, then for all $t \in \mathbb{R}^{Proc}_{>0}$, there exists $t' \in \mathbb{R}^{Proc}_{>0}$ such that $\nu + t \sim \nu' + t'$.

Exercise:

Prove the lemma.

The equivalence \sim can be naturally extended to states of $TS(\mathcal{B})$ by $(s, \nu) \sim (s', \nu')$ if $s = s'$ and $\nu \sim \nu'$.

To show that this defines a bisimulation relation on $TS(\mathcal{B})$, we first introduce the successor relation on regions.
Step 2: The bisimulation relation

Lemma: Time-abstract bisimulation
If $\nu \sim \nu'$, then for all $t \in \mathbb{R}_{>0}^{Proc}$, there exists $t' \in \mathbb{R}_{>0}^{Proc}$ such that $\nu + t \sim \nu' + t'$.

Exercise:
Prove the lemma.

The equivalence \sim can be naturally extended to states of $TS(B)$ by $(s, \nu) \sim (s', \nu')$ if $s = s'$ and $\nu \sim \nu'$.

To show that this defines a bisimulation relation on $TS(B)$, we first introduce the successor relation on regions.

Definition:
Let γ and γ' be two clock regions. We say that γ' is accessible from γ, written $\gamma \preceq \gamma'$, if either $\gamma = \gamma'$ or there are $\nu \in \gamma$, $\nu' \in \gamma'$, $t \in \mathbb{R}_{>0}^{Proc}$ such that $\nu' = \nu + t$.
Step 2: The bisimulation relation

Lemma: Time-abstract bisimulation

If \(\nu \sim \nu' \), then for all \(t \in \mathbb{R}_{\geq 0}^{Proc} \), there exists \(t' \in \mathbb{R}_{\geq 0}^{Proc} \) such that \(\nu + t \sim \nu' + t' \).

Exercise:

Prove the lemma.

The equivalence \(\sim \) can be naturally extended to states of \(TS(B) \) by

\[
(s, \nu) \sim (s', \nu') \quad \text{if} \quad s = s' \quad \text{and} \quad \nu \sim \nu'.
\]

To show that this defines a bisimulation relation on \(TS(B) \), we first introduce the successor relation on regions.

Definition:

Let \(\gamma \) and \(\gamma' \) be two clock regions. We say that \(\gamma' \) is *accessible* from \(\gamma \), written \(\gamma \preceq \gamma' \), if either \(\gamma = \gamma' \) or there are \(\nu \in \gamma \), \(\nu' \in \gamma' \), \(t \in \mathbb{R}_{\geq 0}^{Proc} \) such that \(\nu' = \nu + t \).

Note that \(\preceq \) is a partial-order relation.
Step 2: The bisimulation relation

Lemma: Time-abstract bisimulation

If $\nu \sim \nu'$, then for all $t \in \mathbb{R}_{>0}^{Proc}$, there exists $t' \in \mathbb{R}_{>0}^{Proc}$ such that $\nu + t \sim \nu' + t'$.

Exercise:

Prove the lemma.

The equivalence \sim can be naturally extended to states of $TS(B)$ by

$$(s, \nu) \sim (s', \nu')$$

if $s = s'$ and $\nu \sim \nu'$.

To show that this defines a bisimulation relation on $TS(B)$, we first introduce the successor relation on regions.

Definition:

Let γ and γ' be two clock regions. We say that γ' is accessible from γ, written $\gamma \preceq \gamma'$, if either $\gamma = \gamma'$ or there are $\nu \in \gamma$, $\nu' \in \gamma'$, $t \in \mathbb{R}_{>0}^{Proc}$ such that $\nu' = \nu + t$.

Note that \preceq is a partial-order relation. The direct successor relation, written $\gamma \prec \gamma'$, is as usual defined by $\gamma \preceq \gamma'$, $\gamma \neq \gamma'$, and $\gamma'' = \gamma$ or $\gamma'' = \gamma'$ for all clock regions γ'' with $\gamma \preceq \gamma'' \preceq \gamma'$.
Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).
Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:
Assume \((s, \nu) \xrightarrow{a} (s', \nu')\).
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}, \tau \in \text{Rates}, \varphi \in \text{Constr}(X)\) and \(R \subseteq X\) such that ... hold.
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in Rates\), \(\varphi \in Constr(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \prec \gamma_1 \prec \cdots \prec \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:
Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in \text{Rates}\), \(\varphi \in \text{Constr}(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \triangleleft \gamma_1 \triangleleft \cdots \triangleleft \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i]\) with \(\nu_i = \nu + \tau(t_i)\)
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in Rates\), \(\varphi \in Constr(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \triangleleft \gamma_1 \triangleleft \cdots \triangleleft \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i]\) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in \text{Rates}\), \(\varphi \in \text{Constr}(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \prec \gamma_1 \prec \cdots \prec \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i]\) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in \text{Rates}\), \(\varphi \in \text{Constr}(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \prec \gamma_1 \prec \cdots \prec \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have
 \[\gamma_i = [\nu_i] \text{ with } \nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\]
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)

Assume \((s, \nu) \sim (s, \hat{\nu})\).
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in Rates\), \(\varphi \in Constr(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \prec \gamma_1 \prec \cdots \prec \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i]\) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)

Assume \((s, \nu) \sim (s, \hat{\nu})\). We construct \(\hat{\tau}\) such that, for each \(0 \leq i \leq n\), we have

\[P(i) : \hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) \sim \nu_i\]
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in \text{Rates}\), \(\varphi \in \text{Constr}(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \prec \gamma_1 \prec \cdots \prec \gamma_n\) visited along \(\nu + \tau[0\ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i]\) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)

Assume \((s, \nu) \sim (s, \hat{\nu})\). We construct \(\hat{\tau}\) such that, for each \(0 \leq i \leq n\), we have

\[
P(i) : \hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) \sim \nu_i
\]

We start with \(\hat{\tau}(0) = 0\) so that \(P(0)\) holds.
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in Rates\), \(\varphi \in Constr(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \preceq \gamma_1 \preceq \cdots \preceq \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i]\) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)

Assume \((s, \nu) \sim (s, \hat{\nu})\). We construct \(\hat{\tau}\) such that, for each \(0 \leq i \leq n\), we have

\[
P(i) : \hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) \sim \nu_i
\]

We start with \(\hat{\tau}(0) = 0\) so that \(P(0)\) holds.

Let now \(1 \leq i \leq n\) and assume we have constructed \(\hat{\tau}\) up to \(t_{i-1}\) with \(P(i-1)\).
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}, \tau \in Rates, \varphi \in Constr(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \prec \gamma_1 \prec \cdots \prec \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = \lfloor \nu_i \rfloor\) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)

Assume \((s, \nu) \sim (s, \hat{\nu})\). We construct \(\hat{\tau}\) such that, for each \(0 \leq i \leq n\), we have

\[
P(i): \hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) \sim \nu_i
\]

We start with \(\hat{\tau}(0) = 0\) so that \(P(0)\) holds.

Let now \(1 \leq i \leq n\) and assume we have constructed \(\hat{\tau}\) up to \(t_{i-1}\) with \(P(i - 1)\). Using Lemma [Time-abstract bisimulation], we find \(\hat{t} \in \mathbb{R}^{Proc}_{>0}\) such that \(\hat{\nu}_{i-1} + \hat{t} \sim \nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) = \nu_i\).
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}, \tau \in Rates, \varphi \in \text{Constr}(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \prec \gamma_1 \prec \cdots \prec \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i]\) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)

Assume \((s, \nu) \sim (s, \hat{\nu})\). We construct \(\hat{\tau}\) such that, for each \(0 \leq i \leq n\), we have

\[
P(i) : \hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) \sim \nu_i
\]

We start with \(\hat{\tau}(0) = 0\) so that \(P(0)\) holds.

Let now \(1 \leq i \leq n\) and assume we have constructed \(\hat{\tau}\) up to \(t_{i-1}\) with \(P(i-1)\).

Using Lemma [Time-abstract bisimulation], we find \(\hat{t} \in \mathbb{R}_{\geq 0}^{Proc}\) such that

\[
\hat{\nu}_{i-1} + \hat{t} \sim \nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) = \nu_i.
\]

Define \(\hat{\tau}\) on \([t_{i-1}, t_i]\) using a linear interpolation such that \(\hat{\tau}(t_i) = \hat{\tau}(t_{i-1}) + \hat{t}\).
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}, \tau \in Rates, \varphi \in Constr(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \preceq \gamma_1 \preceq \cdots \preceq \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i]\) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)

Assume \((s, \nu) \sim (s, \hat{\nu})\). We construct \(\hat{\tau}\) such that, for each \(0 \leq i \leq n\), we have

\[
P(i) : \hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) \sim \nu_i\]

We start with \(\hat{\tau}(0) = 0\) so that \(P(0)\) holds.

Let now \(1 \leq i \leq n\) and assume we have constructed \(\hat{\tau}\) up to \(t_{i-1}\) with \(P(i-1)\). Using Lemma [Time-abstract bisimulation], we find \(\hat{t} \in \mathbb{R}^{Proc}_{> 0}\) such that \(\hat{\nu}_{i-1} + \hat{t} \sim \nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) = \nu_i\).

Define \(\hat{\tau}\) on \([t_{i-1}, t_i]\) using a linear interpolation such that \(\hat{\tau}(t_i) = \hat{\tau}(t_{i-1}) + \hat{t}\).

We obtain \(\hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i)\)
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in \text{Rates}\), \(\varphi \in \text{Constr}(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \ll \gamma_1 \ll \cdots \ll \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i]\) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)

Assume \((s, \nu) \sim (s, \hat{\nu})\). We construct \(\hat{\tau}\) such that, for each \(0 \leq i \leq n\), we have

\[P(i) : \hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) \sim \nu_i\]

We start with \(\hat{\tau}(0) = 0\) so that \(P(0)\) holds.

Let now \(1 \leq i \leq n\) and assume we have constructed \(\hat{\tau}\) up to \(t_{i-1}\) with \(P(i-1)\).

Using Lemma [Time-abstract bisimulation], we find \(\hat{t} \in \mathbb{R}^{\text{Proc}}_{>0}\) such that

\[\hat{\nu}_{i-1} + \hat{t} \sim \nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) = \nu_i\]

Define \(\hat{\tau}\) on \([t_{i-1}, t_i]\) using a linear interpolation such that \(\hat{\tau}(t_i) = \hat{\tau}(t_{i-1}) + \hat{t}\).

We obtain \(\hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) = \hat{\nu} + \hat{\tau}(t_{i-1}) + \hat{t}\)
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in Rates\), \(\varphi \in Constr(X)\) and \(R \subseteq X\) such that \(\ldots\) hold. Consider regions \(\gamma_0 \prec \gamma_1 \prec \cdots \prec \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i]\) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)

Assume \((s, \nu) \sim (s, \hat{\nu})\). We construct \(\hat{\tau}\) such that, for each \(0 \leq i \leq n\), we have

\[P(i) : \hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) \sim \nu_i\]

We start with \(\hat{\tau}(0) = 0\) so that \(P(0)\) holds.

Let now \(1 \leq i \leq n\) and assume we have constructed \(\hat{\tau}\) up to \(t_{i-1}\) with \(P(i-1)\).

Using Lemma [Time-abstract bisimulation], we find \(\hat{t} \in \mathbb{R}^{Proc}_{>0}\) such that

\[\hat{\nu}_{i-1} + \hat{t} \sim \nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) = \nu_i\]

Define \(\hat{\tau}\) on \([t_{i-1}, t_i]\) using a linear interpolation such that \(\hat{\tau}(t_i) = \hat{\tau}(t_{i-1}) + \hat{t}\).

We obtain \(\hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) = \hat{\nu} + \hat{\tau}(t_{i-1}) + \hat{t} = \hat{\nu}_{i-1} + \hat{t}\)
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in Rates\), \(\varphi \in Constr(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \prec \gamma_1 \prec \cdots \prec \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i]\) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)

Assume \((s, \nu) \sim (s, \hat{\nu})\). We construct \(\hat{\tau}\) such that, for each \(0 \leq i \leq n\), we have

\[
P(i) : \hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) \sim \nu_i
\]

We start with \(\hat{\tau}(0) = 0\) so that \(P(0)\) holds.

Let now \(1 \leq i \leq n\) and assume we have constructed \(\hat{\tau}\) up to \(t_{i-1}\) with \(P(i-1)\). Using Lemma [Time-abstract bisimulation], we find \(\hat{t} \in \mathbb{R}^{Proc}_{>0}\) such that

\[
\hat{\nu}_{i-1} + \hat{t} \sim \nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) = \nu_i
\]

Define \(\hat{\tau}\) on \([t_{i-1}, t_i]\) using a linear interpolation such that \(\hat{\tau}(t_i) = \hat{\tau}(t_{i-1}) + \hat{t}\).

We obtain \(\hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) = \hat{\nu} + \hat{\tau}(t_{i-1}) + \hat{t} = \hat{\nu}_{i-1} + \hat{t} \sim \nu_i\) (\(P(i)\)).
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof:

Assume \((s, \nu) \xrightarrow{a} (s', \nu')\). Let \(t \in \mathbb{R}_{\geq 0}\), \(\tau \in \text{Rates}\), \(\varphi \in \text{Constr}(X)\) and \(R \subseteq X\) such that ... hold. Consider regions \(\gamma_0 \prec \gamma_1 \prec \cdots \prec \gamma_n\) visited along \(\nu + \tau[0 \ldots t]\):

- there are \(0 = t_0 < t_1 < \cdots < t_n = t\) such that, for \(0 \leq i \leq n\), we have \(\gamma_i = [\nu_i] \) with \(\nu_i = \nu + \tau(t_i) = \nu_{i-1} + \tau(t_i) - \tau(t_{i-1})\)
- for any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have \(\nu + \tau(t') \in \gamma_{i-1} \cup \gamma_i\)

Assume \((s, \nu) \sim (s, \hat{\nu})\). We construct \(\hat{\tau}\) such that, for each \(0 \leq i \leq n\), we have

\[
P(i) : \hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) \sim \nu_i
\]

We start with \(\hat{\tau}(0) = 0\) so that \(P(0)\) holds.

Let now \(1 \leq i \leq n\) and assume we have constructed \(\hat{\tau}\) up to \(t_{i-1}\) with \(P(i-1)\). Using Lemma [Time-abstract bisimulation], we find \(\hat{t} \in \mathbb{R}_{\geq 0}^{\text{Proc}}\) such that

\[
\hat{\nu}_{i-1} + \hat{\tau} \sim \nu_{i-1} + \tau(t_i) - \tau(t_{i-1}) = \nu_i
\]

Define \(\hat{\tau}\) on \([t_{i-1}, t_i]\) using a linear interpolation such that \(\hat{\tau}(t_i) = \hat{\tau}(t_{i-1}) + \hat{t}\).

We obtain \(\hat{\nu}_i = \hat{\nu} + \hat{\tau}(t_i) = \hat{\nu} + \hat{\tau}(t_{i-1}) + \hat{t} = \hat{\nu}_{i-1} + \hat{t} \sim \nu_i\) \((P(i))\).

Finally, for \(t' \geq t_n = t\), we let \(\hat{\tau}(t') = \hat{\tau}(t_n) + \text{id}(t' - t_n)\).
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof (cntd.):

For any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have

\[
\gamma_{i-1} = [\hat{\nu}_{i-1}] \leq [\hat{\nu} + \hat{\tau}(t')] \leq [\hat{\nu}_i] = \gamma_i
\]

and since \(\gamma_{i-1} \prec \gamma_i\) we obtain \(\hat{\nu} + \hat{\tau}(t') \in \gamma_{i-1} \cup \gamma_i\).
Step 2: The bisimulation relation

Lemma: Bisimulation

\((s, \nu) \sim (s, \hat{\nu}) \) and \((s, \nu) \xrightarrow{a} (s', \nu') \) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}') \) for some \(\hat{\nu}' \sim \nu' \).

Proof (cntd.):

For any \(1 \leq i \leq n \) and all \(t_{i-1} < t' < t_i \) we have

\[
\gamma_{i-1} = [\hat{\nu}_{i-1}] \leq [\hat{\nu} + \hat{\tau}(t')] \leq [\hat{\nu}_i] = \gamma_i
\]

and since \(\gamma_{i-1} \prec \gamma_i \) we obtain \(\hat{\nu} + \hat{\tau}(t') \in \gamma_{i-1} \cup \gamma_i \).

Therefore, \(\hat{\nu} + \hat{\tau}(t') \models \text{Inv}(s) \) for all \(t' \in [0, t] \) and \(\hat{\nu}_n = \hat{\nu} + \hat{\tau}(t) \models \varphi \).
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof (cntd.):
For any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have

\[
\gamma_{i-1} = [\hat{\nu}_{i-1}] \preceq [\hat{\nu} + \hat{\tau}(t')] \preceq [\hat{\nu}_i] = \gamma_i
\]

and since \(\gamma_{i-1} \preceq \gamma_i\) we obtain \(\hat{\nu} + \hat{\tau}(t') \in \gamma_{i-1} \cup \gamma_i\).

Therefore, \(\hat{\nu} + \hat{\tau}(t') \models \text{Inv}(s)\) for all \(t' \in [0, t]\) and \(\hat{\nu}_n = \hat{\nu} + \hat{\tau}(t) \models \varphi\).

We let \(\hat{\nu}' = \hat{\nu}_n[R \leftarrow 0] \sim \nu_n[R \leftarrow 0] = \nu'\).
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \hat{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) for some \(\hat{\nu}' \sim \nu'\).

Proof (cntd.):

For any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have

\[
\gamma_{i-1} = [\hat{\nu}_{i-1}] \leq [\hat{\nu} + \hat{\tau}(t')] \leq [\hat{\nu}_i] = \gamma_i
\]

and since \(\gamma_{i-1} \prec \gamma_i\) we obtain \(\hat{\nu} + \hat{\tau}(t') \in \gamma_{i-1} \cup \gamma_i\).

Therefore, \(\hat{\nu} + \hat{\tau}(t') \models \text{Inv}(s)\) for all \(t' \in [0, t]\) and \(\hat{\nu}_n = \hat{\nu} + \hat{\tau}(t) \models \varphi\).

We let \(\hat{\nu}' = \hat{\nu}_n[R \leftarrow 0] \sim \nu_n[R \leftarrow 0] = \nu'\).

We have \(\hat{\nu}' \models \text{Inv}(s')\) and we deduce that \((s, \hat{\nu}) \xrightarrow{a} (s', \hat{\nu}')\) in \(TS(B)\).
Step 2: The bisimulation relation

Lemma: Bisimulation

If \((s, \nu) \sim (s, \check{\nu})\) and \((s, \nu) \xrightarrow{a} (s', \nu')\) then \((s, \check{\nu}) \xrightarrow{a} (s', \check{\nu}')\) for some \(\check{\nu}' \sim \nu'\).

Proof (cntd.):

For any \(1 \leq i \leq n\) and all \(t_{i-1} < t' < t_i\) we have

\[
\gamma_{i-1} = [\check{\nu}_{i-1}] \leq [\check{\nu} + \hat{\tau}(t')] \leq [\check{\nu}_i] = \gamma_i
\]

and since \(\gamma_{i-1} \prec \gamma_i\) we obtain \(\check{\nu} + \hat{\tau}(t') \in \gamma_{i-1} \cup \gamma_i\).

Therefore, \(\check{\nu} + \hat{\tau}(t') \models \text{Inv}(s)\) for all \(t' \in [0, t]\) and \(\check{\nu}_n = \check{\nu} + \hat{\tau}(t) \models \varphi\).

We let \(\check{\nu}' = \check{\nu}_n[R \leftarrow 0] \sim \nu_n[R \leftarrow 0] = \nu'\).

We have \(\check{\nu}' \models \text{Inv}(s')\) and we deduce that \((s, \check{\nu}) \xrightarrow{a} (s', \check{\nu}')\) in \(TS(B)\). □
Step 2: The bisimulation relation

It remains to consider the finite quotient $TS(B)/\sim$, which is the finite transition system defined as follows:
Step 2: The bisimulation relation

It remains to consider the finite quotient $TS(B)/\sim$, which is the finite transition system defined as follows:

- states: equivalence classes $[(s, \nu)]$
Step 2: The bisimulation relation

It remains to consider the finite quotient $TS(B)/\sim$, which is the finite transition system defined as follows:

- states: equivalence classes $[(s, \nu)]$
- initial state: $[(s_0, \nu_0)]$
Step 2: The bisimulation relation

It remains to consider the finite quotient $TS(B)/\sim$, which is the finite transition system defined as follows:

- states: equivalence classes $[(s, \nu)]$
- initial state: $[(s_0, \nu_0)]$
- final states: $[(s, \nu)]$ with $s \in F$
Step 2: The bisimulation relation

It remains to consider the finite quotient $TS(\mathcal{B})/\sim$, which is the finite transition system defined as follows:

- states: equivalence classes $[(s, \nu)]$
- initial state: $[(s_0, \nu_0)]$
- final states: $[(s, \nu)]$ with $s \in F$
- transitions: $[(s, \nu)] \xrightarrow{a} [(s', \nu')]$ for all transitions $(s, \nu) \xrightarrow{a} (s', \nu')$ of $TS(\mathcal{B})$
Step 2: The bisimulation relation

It remains to consider the finite quotient $TS(B)/\sim$, which is the finite transition system defined as follows:

- states: equivalence classes $[(s, \nu)]$
- initial state: $[(s_0, \nu_0)]$
- final states: $[(s, \nu)]$ with $s \in F$
- transitions: $[(s, \nu)] \xrightarrow{a} [(s', \nu')]$ for all transitions $(s, \nu) \xrightarrow{a} (s', \nu')$ of $TS(B)$

Since the bisimulation equivalence relation \sim on $TS(B)$ preserves final states, we obtain:

Corollary:

$L(TS(B)/\sim) = L(TS(B))$
The region automaton

The finite automaton $TS(B)/\sim$ is not exactly what is usually called the *region automaton* in the classical theory of timed automata.
The region automaton

The finite automaton $TS(B)/\sim$ is not exactly what is usually called the *region automaton* in the classical theory of timed automata.

Definition: Region automaton

The region automaton associated with B is actually

$$R_B = (S', \Sigma, T', s'_0, F')$$

where

- $S' = S \times Regions(B)$ with $Regions(B) = \{[\nu] \mid \nu : X \to \mathbb{R}_{\geq 0}\}$
The region automaton

The finite automaton $TS(B) / \sim$ is not exactly what is usually called the region automaton in the classical theory of timed automata.

Definition: Region automaton

The region automaton associated with B is actually

$$\mathcal{R}_B = (S', \Sigma, T', s'_0, F')$$

where

- $S' = S \times \text{Regions}(B)$ with $\text{Regions}(B) = \{ [\nu] \mid \nu : X \to \mathbb{R}_{\geq 0} \}$
- $s'_0 = (s_0, [\nu_0])$
The region automaton

The finite automaton $TS(\mathcal{B})/\sim$ is not exactly what is usually called the region automaton in the classical theory of timed automata.

Definition: Region automaton

The region automaton associated with \mathcal{B} is actually

$$\mathcal{R}_\mathcal{B} = (S', \Sigma, T', s'_0, F')$$

where

- $S' = S \times \text{Regions}(\mathcal{B})$ with $\text{Regions}(\mathcal{B}) = \{[\nu] | \nu: X \to \mathbb{R}_{\geq 0}\}$
- $s'_0 = (s_0, [\nu_0])$
- $F' = F \times \text{Regions}(\mathcal{B})$
The region automaton

The finite automaton $TS(B)/\sim$ is not exactly what is usually called the region automaton in the classical theory of timed automata.

Definition: Region automaton

The region automaton associated with B is actually

$$R_B = (S', \Sigma, T', s_0', F')$$

where

- $S' = S \times Regions(B)$ with $Regions(B) = \{[\nu] \mid \nu : X \to \mathbb{R}_{\geq 0}\}$
- $s_0' = (s_0, [\nu_0])$
- $F' = F \times Regions(B)$
- for all $a \in \Sigma$ and $s, s' \in S$ and $\gamma, \gamma' \in Regions(B)$, T' contains $(s, \gamma) \xrightarrow{a} (s', \gamma')$ if one of the following holds:
The region automaton

The finite automaton $TS(B)/\sim$ is not exactly what is usually called the region automaton in the classical theory of timed automata.

Definition: Region automaton

The region automaton associated with B is actually

$$R_B = (S', \Sigma, T', s'_0, F')$$

where

- $S' = S \times \text{Regions}(B)$ with $\text{Regions}(B) = \{[\nu] \mid \nu : X \rightarrow \mathbb{R}_{\geq 0}\}$
- $s'_0 = (s_0, [\nu_0])$
- $F' = F \times \text{Regions}(B)$
- for all $a \in \Sigma_\varepsilon$ and $s, s' \in S$ and $\gamma, \gamma' \in \text{Regions}(B)$, T' contains $(s, \gamma) \xrightarrow{a} (s', \gamma')$ if one of the following holds:
 - $a = \varepsilon$, $s = s'$, $\gamma \prec \gamma'$, and $\nu' \models \text{Inv}(s)$ for some $\nu' \in \gamma'$

 (time-elapse transition)
The region automaton

The finite automaton $T\Sigma(B)/\sim$ is not exactly what is usually called the region automaton in the classical theory of timed automata.

Definition: Region automaton

The region automaton associated with B is actually

$$\mathcal{R}_B = (S', \Sigma, T', s'_0, F')$$

where

- $S' = S \times \text{Regions}(B)$ with $\text{Regions}(B) = \{ [\nu] \mid \nu : X \to \mathbb{R}_{\geq 0} \}$
- $s'_0 = (s_0, [\nu_0])$
- $F' = F \times \text{Regions}(B)$
- for all $a \in \Sigma_\varepsilon$ and $s, s' \in S$ and $\gamma, \gamma' \in \text{Regions}(B)$,
 T' contains $(s, \gamma) \xrightarrow{a} (s', \gamma')$ if one of the following holds:
 - $a = \varepsilon$, $s = s'$, $\gamma \preceq \gamma'$, and $\nu' \models \text{Inv}(s)$ for some $\nu' \in \gamma'$
 (time-elapse transition)
 - there are $\nu \in \gamma$ and $(s, a, \varphi, R, s') \in T$ such that $\nu \models \varphi \wedge \text{Inv}(s)$, $\nu[R \leftarrow 0] \models \text{Inv}(s')$, and $\nu[R \leftarrow 0] \in \gamma'$
 (discrete transition).
The region automaton

Example:

A part of \mathcal{R}_B for the icTA B from a previous example:
The region automaton

A sequence of time-elapse transitions followed by a discrete transition of \mathcal{R}_B is a transition of $TS(\mathcal{B})/\sim$.
The region automaton

A sequence of time-elapse transitions followed by a discrete transition of \mathcal{R}_B is a transition of $TS(B)/\sim$.

Any transition of $TS(B)/\sim$ can be decomposed into a sequence of time-elapse transitions followed by a discrete transition of \mathcal{R}_B.
The region automaton

A sequence of time-elapse transitions followed by a discrete transition of R_B is a transition of $TS(B)/\sim$.

Any transition of $TS(B)/\sim$ can be decomposed into a sequence of time-elapse transitions followed by a discrete transition of R_B.

Theorem:

Let $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA and let C be the largest constant a clock is compared with in \mathcal{B}.
The region automaton

A sequence of time-elapse transitions followed by a discrete transition of \mathcal{R}_B is a transition of $TS(\mathcal{B})/\sim$.

Any transition of $TS(\mathcal{B})/\sim$ can be decomposed into a sequence of time-elapse transitions followed by a discrete transition of \mathcal{R}_B.

Theorem:

Let $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA and let C be the largest constant a clock is compared with in \mathcal{B}. Then, the number of states of $TS(\mathcal{B})/\sim$ and of \mathcal{R}_B is bounded by $|S| \cdot (2C + 2)^{|X|} \cdot |X|!$
The region automaton

A sequence of time-elapse transitions followed by a discrete transition of R_B is a transition of $TS(B)/\sim$.

Any transition of $TS(B)/\sim$ can be decomposed into a sequence of time-elapse transitions followed by a discrete transition of R_B.

Theorem:

Let $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA and let C be the largest constant a clock is compared with in B. Then, the number of states of $TS(B)/\sim$ and of R_B is bounded by $|S| \cdot (2C + 2)^{|X|} \cdot |X|!$ and we have

$$L(R_B) = L(TS(B)/\sim) = L(TS(B)) = L_\exists(B)$$

which is therefore a regular word language.
The region automaton

A sequence of time-elapse transitions followed by a discrete transition of R_B is a transition of $TS(B)/\sim$.

Any transition of $TS(B)/\sim$ can be decomposed into a sequence of time-elapse transitions followed by a discrete transition of R_B.

Theorem:

Let $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA and let C be the largest constant a clock is compared with in B. Then, the number of states of $TS(B)/\sim$ and of R_B is bounded by $|S| \cdot (2C + 2)^{|X|} \cdot |X|!$ and we have

$$L(R_B) = L(TS(B)/\sim) = L(TS(B)) = L_{\exists}(B)$$

which is therefore a regular word language.

Assume a regular set Bad. Then, since $L_{\exists}(B)$ is a regular word language, so is $L_{\exists}(B) \cap Bad$. Thus, we solved the verification problem stated at the beginning:
The region automaton

A sequence of time-elapse transitions followed by a discrete transition of \(R_B \) is a transition of \(TS(B)/\sim \).

Any transition of \(TS(B)/\sim \) can be decomposed into a sequence of time-elapse transitions followed by a discrete transition of \(R_B \).

Theorem:

Let \(B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi) \) be an icTA and let \(C \) be the largest constant a clock is compared with in \(B \). Then, the number of states of \(TS(B)/\sim \) and of \(R_B \) is bounded by \(|S| \cdot (2C + 2)|X| \cdot |X|!\) and we have

\[
L(R_B) = L(TS(B)/\sim) = L(TS(B)) = L_\exists(B)
\]

which is therefore a regular word language.

Assume a regular set \(Bad \). Then, since \(L_\exists(B) \) is a regular word language, so is \(L_\exists(B) \cap Bad \). Thus, we solved the verification problem stated at the beginning:

Theorem:

Model checking icTA/DTA wrt. regular safety specifications is decidable.
Distributed Timed Automata

The Model

Existential Semantics and Region Abstraction

- Universal Semantics and Undecidability

Reactive Semantics

Summary

Message Sequence Charts with Timing Constraints \((\text{TC-MSCs})\)

Message Sequence Charts (MSCs)

Message Sequence Charts with Timing Constraints (TC-MSCs)

Realizability of Single TC-MSCs

Message Sequence Graphs with Timing Constraints

Timed Channel Systems

\textbf{Time(d) Petri Nets}

Time Petri Nets (TPN)

Decision problems for TPN

Timed Petri Nets (TdPN)

Decision problems for TdPN

Decidability of Coverability for TdPN

Expressiveness (credits to Serge Haddad)
Universal semantics and undecidability

Now, we turn to positive/liveness specifications, which amounts to checking containment in the universal semantics.
Universal semantics and undecidability

Now, we turn to positive/liveness specifications, which amounts to checking containment in the universal semantics. Unfortunately, emptiness and universality are undecidable, both for icTA and DTA. We will only show the following result:
Universal semantics and undecidability

Now, we turn to positive/liveness specifications, which amounts to checking containment in the universal semantics. Unfortunately, emptiness and universality are undecidable, both for icTA and DTA. We will only show the following result:

Theorem:

The following problem is undecidable:

INPUT: Finite set $Proc$ of processes, icTA B over $Proc$

QUESTION: $L_\forall(B) = \emptyset$?
Universal semantics and undecidability

Now, we turn to positive/liveness specifications, which amounts to checking containment in the universal semantics.

Unfortunately, emptiness and universality are undecidable, both for icTA and DTA. We will only show the following result:

Theorem:
The following problem is undecidable:

Input: Finite set $Proc$ of processes, icTA B over $Proc$

Question: $L_{\forall}(B) = \emptyset$?

Proof:
The proof is by reduction from Post’s correspondence problem (PCP):

Post’s correspondence problem (PCP)

Input: Alphabet A and morphisms $f, g : A^* \rightarrow \{0, 1\}^*$.

Question: Is there $w \in A^+$ such that $f(w) = g(w)$?
PCP encoding

Let $A = \{a_1, \ldots, a_k\}$, where $k \geq 1$, and f, g be an instance of the PCP.
PCP encoding

Let $A = \{a_1, \ldots, a_k\}$, where $k \geq 1$, and f, g be an instance of the PCP.

Goal:

An icTA \mathcal{B} over $Proc = \{p, q\}$ such that $L_{\forall}(\mathcal{B}) = \{w \in A^+ \mid f(w) = g(w)\}$.
PCP encoding

Let \(A = \{a_1, \ldots, a_k\} \), where \(k \geq 1 \), and \(f, g \) be an instance of the PCP.

Goal:

An icTA \(B \) over \(\text{Proc} = \{p, q\} \) such that \(L_{\forall}(B) = \{w \in A^+ \mid f(w) = g(w)\} \).

Idea: Encode sequences over \(\{0, 1\} \) in terms of local time functions.
Pair \(\tau = (\tau_p, \tau_q) \in Rates \) encodes word in \(\{0, 1, 2\}^\omega \) using \(1 \times 1 \)-square regions.
PCP encoding

Let $A = \{a_1, \ldots, a_k\}$, where $k \geq 1$, and f, g be an instance of the PCP.

Goal:

An icTA B over $Proc = \{p, q\}$ such that $L\forall(B) = \{w \in A^+ | f(w) = g(w)\}$.

Idea: Encode sequences over $\{0, 1\}$ in terms of local time functions. Pair $\tau = (\tau_p, \tau_q) \in Rates$ encodes word in $\{0, 1, 2\}^\omega$ using 1×1-square regions. In the figure, we obtain $dir(\tau) = 101 \ldots$
PCP encoding

With τ, we associate sequences

- $t_{\text{dir}}(\tau) = t_1 t_2 \ldots \in (\mathbb{R}_{\geq 0})^\omega$ of time instances
PCP encoding

With τ, we associate sequences

- $t\text{-}dir(\tau) = t_1t_2 \ldots \in (\mathbb{R}_{\geq 0})^\omega$ of time instances
- $dir(\tau) = d_1d_2 \ldots \in \{0, 1, 2\}^\omega$ of directions
PCP encoding

With τ, we associate sequences

- t-dir$(\tau) = t_1 t_2 \ldots \in (\mathbb{R}_{\geq 0})^\omega$ of time instances
- dir$(\tau) = d_1 d_2 \ldots \in \{0, 1, 2\}^\omega$ of directions

For $i \geq 1$, let $t_i = \min\{t > t_{i-1} \mid \tau_r(t) - \tau_r(t_{i-1}) = 1 \text{ for some } r \in Proc\}$ (assuming $t_0 = 0$).
PCP encoding

With τ, we associate sequences

- $t\text{-dir}(\tau) = t_1 t_2 \ldots \in (\mathbb{R}_{\geq 0})^\omega$ of time instances
- $\text{dir}(\tau) = d_1 d_2 \ldots \in \{0, 1, 2\}^\omega$ of directions

For $i \geq 1$, let $t_i = \min\{t > t_{i-1} \mid \tau_r(t) - \tau_r(t_{i-1}) = 1 \text{ for some } r \in \text{Proc}\}$ (assuming $t_0 = 0$). With this, we set

$$d_i = \begin{cases}
0 & \text{if } \tau_p(t_i) - \tau_p(t_{i-1}) < 1 \text{ and } \tau_q(t_i) - \tau_q(t_{i-1}) = 1 \\
1 & \text{if } \tau_q(t_i) - \tau_q(t_{i-1}) < 1 \text{ and } \tau_p(t_i) - \tau_p(t_{i-1}) = 1 \\
2 & \text{otherwise}
\end{cases}$$
PCP encoding

With τ, we associate sequences

- t-dir(τ) = $t_1 t_2 \ldots \in (\mathbb{R}_{\geq 0})^\omega$ of time instances
- $dir(\tau) = d_1 d_2 \ldots \in \{0, 1, 2\}^\omega$ of directions

For $i \geq 1$, let $t_i = \min\{t > t_{i-1} \mid \tau_r(t) - \tau_r(t_{i-1}) = 1 \text{ for some } r \in \text{Proc}\}$ (assuming $t_0 = 0$). With this, we set

$$d_i = \begin{cases}
0 & \text{if } \tau_p(t_i) - \tau_p(t_{i-1}) < 1 \text{ and } \tau_q(t_i) - \tau_q(t_{i-1}) = 1 \\
1 & \text{if } \tau_q(t_i) - \tau_q(t_{i-1}) < 1 \text{ and } \tau_p(t_i) - \tau_p(t_{i-1}) = 1 \\
2 & \text{otherwise}
\end{cases}$$

To “detect” this encoding in automata, we introduce independent clocks $X = \{x, y\}$ (x for p, and y for q) and use the following guards:

$$\text{guard}(0) = (x < 1 \land y = 1)$$
$$\text{guard}(1) = (y < 1 \land x = 1)$$
$$\text{guard}(2) = (x = 1 \land y = 1)$$
PCP encoding

With τ, we associate sequences

- t-dir(τ) = $t_1t_2\ldots \in (\mathbb{R}_{\geq 0})^\omega$ of time instances
- $dir(\tau)$ = $d_1d_2\ldots \in \{0, 1, 2\}^\omega$ of directions

For $i \geq 1$, let $t_i = \min\{t > t_{i-1} \mid \tau_r(t) - \tau_r(t_{i-1}) = 1 \text{ for some } r \in \text{Proc}\}$ (assuming $t_0 = 0$). With this, we set

$$d_i = \begin{cases}
0 & \text{if } \tau_p(t_i) - \tau_p(t_{i-1}) < 1 \text{ and } \tau_q(t_i) - \tau_q(t_{i-1}) = 1 \\
1 & \text{if } \tau_q(t_i) - \tau_q(t_{i-1}) < 1 \text{ and } \tau_p(t_i) - \tau_p(t_{i-1}) = 1 \\
2 & \text{otherwise}
\end{cases}$$

To “detect” this encoding in automata, we introduce independent clocks $X = \{x, y\}$ (x for p, and y for q) and use the following guards:

- $\text{guard}(0) = (x < 1 \land y = 1)$
- $\text{guard}(1) = (y < 1 \land x = 1)$
- $\text{guard}(2) = (x = 1 \land y = 1)$

Let $\overline{\text{guard}(d)} = \bigvee_{d' \in \{0, 1, 2\}\setminus\{d\}} \text{guard}(d')$ be the “negation” of guard.
PCP encoding

With τ, we associate sequences

1. t-dir$(\tau) = t_1t_2\ldots \in (\mathbb{R}_{\geq 0})^\omega$ of time instances
2. $\text{dir}(\tau) = d_1d_2\ldots \in \{0, 1, 2\}^\omega$ of directions

For $i \geq 1$, let $t_i = \min\{t > t_{i-1} \mid \tau_r(t) - \tau_r(t_{i-1}) = 1 \text{ for some } r \in \text{Proc}\}$ (assuming $t_0 = 0$). With this, we set

$$d_i = \begin{cases}
0 & \text{if } \tau_p(t_i) - \tau_p(t_{i-1}) < 1 \text{ and } \tau_q(t_i) - \tau_q(t_{i-1}) = 1 \\
1 & \text{if } \tau_q(t_i) - \tau_q(t_{i-1}) < 1 \text{ and } \tau_p(t_i) - \tau_p(t_{i-1}) = 1 \\
2 & \text{otherwise}
\end{cases}$$

To “detect” this encoding in automata, we introduce independent clocks $X = \{x, y\}$ (x for p, and y for q) and use the following guards:

- $\text{guard}(0) = (x < 1 \land y = 1)$
- $\text{guard}(1) = (y < 1 \land x = 1)$
- $\text{guard}(2) = (x = 1 \land y = 1)$

Let $\overline{\text{guard}}(d) = \bigvee_{d' \in \{0, 1, 2\} \setminus \{d\}} \text{guard}(d')$ be the “negation” of guard. Applying a new square then corresponds to resetting both clocks at the same time.
PCP encoding

Goal:
An icTA $B = (S, A, X, T, \text{Inv}, s_0, F, \pi)$ over $Proc = \{p, q\}$ and $A = \{a_1, \ldots, a_k\}$ such that $L_{\forall}(B) = \{w \in A^+ \mid f(w) = g(w)\}$. Recall that $X = \{x, y\}$ with $\pi(x) = p$ and $\pi(y) = q$.
PCP encoding

Goal:

An icTA $B = (S, A, X, T, \text{Inv}, s_0, F, \pi)$ over $Proc = \{p, q\}$ and $A = \{a_1, \ldots, a_k\}$ such that $L(B) = \{w \in A^+ \mid f(w) = g(w)\}$. Recall that $X = \{x, y\}$ with $\pi(x) = p$ and $\pi(y) = q$.

We proceed in two steps:

1. We construct icTA

 $B_f = (S_f, A, X, T_f, \text{Inv}_f, s^f_0, F_f, \pi)$

 $B_g = (S_g, A, X, T_g, \text{Inv}_g, s^g_0, F_g, \pi)$

 over $Proc$ such that, for all $\tau \in \text{Rates}$:

 $L(B_f, \tau) = \{ w \in A^+ \mid f(w).2 \trianglelefteq dir(\tau) \}$

 $L(B_g, \tau) = \{ w \in A^+ \mid g(w).2 \leq dir(\tau) \}$

 Here, \trianglelefteq denotes the prefix relation.
PCP encoding

Goal:

An icTA $\mathcal{B} = (S, A, X, T, \text{Inv}, s_0, F, \pi)$ over $\text{Proc} = \{p, q\}$ and $A = \{a_1, \ldots, a_k\}$ such that $L_\forall(\mathcal{B}) = \{w \in A^+ \mid f(w) = g(w)\}$. Recall that $X = \{x, y\}$ with $\pi(x) = p$ and $\pi(y) = q$.

We proceed in two steps:

1. We construct icTA
 $\mathcal{B}_f = (S_f, A, X, T_f, \text{Inv}_f, s_0^f, F_f, \pi)$
 $\mathcal{B}_g = (S_g, A, X, T_g, \text{Inv}_g, s_0^g, F_g, \pi)$
 over Proc such that, for all $\tau \in \text{Rates}$:

 $L(\mathcal{B}_f, \tau) = \{w \in A^+ \mid f(w).2 \not\preceq \text{dir}(\tau)\}$
 $L(\mathcal{B}_g, \tau) = \{w \in A^+ \mid g(w).2 \preceq \text{dir}(\tau)\}$

 Here, \preceq denotes the prefix relation.

2. We build $\mathcal{B} = \mathcal{B}_f \lor \mathcal{B}_g$, which branches non-deterministically into \mathcal{B}_f or \mathcal{B}_g.
PCP encoding

So assume the following:

\[L(B_f, \tau) = \{ w \in A^+ \mid f(w).2 \not\leq \text{dir}(\tau) \} \]
\[L(B_g, \tau) = \{ w \in A^+ \mid g(w).2 \leq \text{dir}(\tau) \} \]
\[B = B_f \lor B_g \]

Lemma:

\[L_{\forall}(B) = \{ w \in A^+ \mid f(w) = g(w) \} \]
PCP encoding

So assume the following:

\[L(B_f, \tau) = \{ w \in A^+ \mid f(w).2 \not\leq \text{dir}(\tau) \} \]
\[L(B_g, \tau) = \{ w \in A^+ \mid g(w).2 \leq \text{dir}(\tau) \} \]
\[B = B_f \lor B_g \]

Lemma:

\[L_{\forall}(B) = \{ w \in A^+ \mid f(w) = g(w) \} \]

Proof:

"\subseteq": Let \(w \in L_{\forall}(B) \).
PCP encoding

So assume the following:

\[L(\mathcal{B}_f, \tau) = \{ w \in A^+ \mid f(w).2 \not\preceq \text{dir}(\tau) \} \]
\[L(\mathcal{B}_g, \tau) = \{ w \in A^+ \mid g(w).2 \leq \text{dir}(\tau) \} \]
\[\mathcal{B} = \mathcal{B}_f \lor \mathcal{B}_g \]

Lemma:

\[L_{\forall}(\mathcal{B}) = \{ w \in A^+ \mid f(w) = g(w) \} \]

Proof:

"\subseteq": Let \(w \in L_{\forall}(\mathcal{B}) \). Then, \(w \in A^+ \) and, for all \(\tau \in \text{Rates} \), \(w \in L(\mathcal{B}_f, \tau) \) or \(w \in L(\mathcal{B}_g, \tau) \).
PCP encoding

So assume the following:

\[L(\mathcal{B}_f, \tau) = \{ w \in A^+ \mid f(w).2 \not\leq \text{dir}(\tau) \} \]
\[L(\mathcal{B}_g, \tau) = \{ w \in A^+ \mid g(w).2 \leq \text{dir}(\tau) \} \]
\[\mathcal{B} = \mathcal{B}_f \lor \mathcal{B}_g \]

Lemma:

\[L_{\forall}(\mathcal{B}) = \{ w \in A^+ \mid f(w) = g(w) \} \]

Proof:

“\(\subseteq \)”: Let \(w \in L_{\forall}(\mathcal{B}) \). Then, \(w \in A^+ \) and, for all \(\tau \in \text{Rates} \), \(w \in L(\mathcal{B}_f, \tau) \) or \(w \in L(\mathcal{B}_g, \tau) \), i.e., \(f(w).2 \not\leq \text{dir}(\tau) \) or \(g(w).2 \leq \text{dir}(\tau) \).
PCP encoding

So assume the following:

\[L(B_f, \tau) = \{ w \in A^+ \mid f(w).2 \not\leq \text{dir}(\tau) \} \]
\[L(B_g, \tau) = \{ w \in A^+ \mid g(w).2 \leq \text{dir}(\tau) \} \]
\[B = B_f \lor B_g \]

Lemma:

\[L_{\forall}(B) = \{ w \in A^+ \mid f(w) = g(w) \} \]

Proof:

“⊆”: Let \(w \in L_{\forall}(B) \). Then, \(w \in A^+ \) and, for all \(\tau \in \text{Rates} \), \(w \in L(B_f, \tau) \) or \(w \in L(B_g, \tau) \), i.e., \(f(w).2 \not\leq \text{dir}(\tau) \) or \(g(w).2 \leq \text{dir}(\tau) \). Pick one \(\tau \) such that \(f(w).2 \leq \text{dir}(\tau) \).
PCP encoding

So assume the following:

\[
L(B_f, \tau) = \{ w \in A^+ | f(w).2 \not\subseteq \text{dir}(\tau) \}
\]

\[
L(B_g, \tau) = \{ w \in A^+ | g(w).2 \leq \text{dir}(\tau) \}
\]

\[
B = B_f \lor B_g
\]

Lemma:

\[
L_{\forall}(B) = \{ w \in A^+ | f(w) = g(w) \}
\]

Proof:

"\(\subseteq \): Let \(w \in L_{\forall}(B) \). Then, \(w \in A^+ \) and, for all \(\tau \in \text{Rates} \), \(w \in L(B_f, \tau) \) or \(w \in L(B_g, \tau) \), i.e., \(f(w).2 \not\subseteq \text{dir}(\tau) \) or \(g(w).2 \leq \text{dir}(\tau) \). Pick one \(\tau \) such that \(f(w).2 \leq \text{dir}(\tau) \). As then \(g(w).2 \leq \text{dir}(\tau) \) and \(f(w), g(w) \in \{0, 1\}^* \), we have \(f(w) = g(w) \).
PCP encoding

So assume the following:

\[
L(B_f, \tau) = \{ w \in A^+ \mid f(w).2 \not\leq \text{dir}(\tau) \} \\
L(B_g, \tau) = \{ w \in A^+ \mid g(w).2 \leq \text{dir}(\tau) \} \\
B = B_f \lor B_g
\]

Lemma:

\[
L_\forall(B) = \{ w \in A^+ \mid f(w) = g(w) \}
\]

Proof:

\(\subseteq\): Let \(w \in L_\forall(B) \). Then, \(w \in A^+ \) and, for all \(\tau \in \text{Rates} \), \(w \in L(B_f, \tau) \) or \(w \in L(B_g, \tau) \), i.e., \(f(w).2 \not\leq \text{dir}(\tau) \) or \(g(w).2 \leq \text{dir}(\tau) \). Pick one \(\tau \) such that \(f(w).2 \leq \text{dir}(\tau) \). As then \(g(w).2 \leq \text{dir}(\tau) \) and \(f(w), g(w) \in \{0, 1\}^* \), we have \(f(w) = g(w) \).

\(\supseteq\): Let \(w \in A^+ \) such that \(f(w) = g(w) \).
PCP encoding

So assume the following:

\[
L(B_f, \tau) = \{ w \in A^+ \mid f(w) \cdot 2 \not\leq \text{dir}(\tau) \}
\]

\[
L(B_g, \tau) = \{ w \in A^+ \mid g(w) \cdot 2 \leq \text{dir}(\tau) \}
\]

\[
B = B_f \lor B_g
\]

Lemma:

\[
L_\forall(B) = \{ w \in A^+ \mid f(w) = g(w) \}
\]

Proof:

“\(\subseteq\)”: Let \(w \in L_\forall(B)\). Then, \(w \in A^+\) and, for all \(\tau \in \text{Rates}\), \(w \in L(B_f, \tau)\) or \(w \in L(B_g, \tau)\), i.e., \(f(w) \cdot 2 \not\leq \text{dir}(\tau)\) or \(g(w) \cdot 2 \leq \text{dir}(\tau)\). Pick one \(\tau\) such that \(f(w) \cdot 2 \leq \text{dir}(\tau)\). As then \(g(w) \cdot 2 \leq \text{dir}(\tau)\) and \(f(w), g(w) \in \{0, 1\}^*\), we have \(f(w) = g(w)\).

“\(\supseteq\)”: Let \(w \in A^+\) such that \(f(w) = g(w)\). Let \(\tau \in \text{Rates}\). Trivially, it holds \(f(w) \cdot 2 \not\leq \text{dir}(\tau)\) or \(f(w) \cdot 2 \leq \text{dir}(\tau)\).
PCP encoding

So assume the following:

\[L(B_f, \tau) = \{ w \in A^+ \mid f(w).2 \not\leq \text{dir}(\tau) \} \]
\[L(B_g, \tau) = \{ w \in A^+ \mid g(w).2 \leq \text{dir}(\tau) \} \]
\[B = B_f \lor B_g \]

Lemma:

\[L_\forall(B) = \{ w \in A^+ \mid f(w) = g(w) \} \]

Proof:

“\(\subseteq\)” : Let \(w \in L_\forall(B) \). Then, \(w \in A^+ \) and, for all \(\tau \in \text{Rates} \), \(w \in L(B_f, \tau) \) or \(w \in L(B_g, \tau) \), i.e., \(f(w).2 \not\leq \text{dir}(\tau) \) or \(g(w).2 \leq \text{dir}(\tau) \). Pick one \(\tau \) such that \(f(w).2 \leq \text{dir}(\tau) \). As then \(g(w).2 \leq \text{dir}(\tau) \) and \(f(w), g(w) \in \{0, 1\}^* \), we have \(f(w) = g(w) \).

“\(\supseteq\)” : Let \(w \in A^+ \) such that \(f(w) = g(w) \). Let \(\tau \in \text{Rates} \). Trivially, it holds \(f(w).2 \not\leq \text{dir}(\tau) \) or \(f(w).2 \leq \text{dir}(\tau) \). As \(f(w) = g(w) \), the latter implies \(g(w).2 \leq \text{dir}(\tau) \).
PCP encoding

So assume the following:

\[L(B_f, \tau) = \{ w \in A^+ \mid f(w).2 \not\leq \text{dir}(\tau) \} \]
\[L(B_g, \tau) = \{ w \in A^+ \mid g(w).2 \leq \text{dir}(\tau) \} \]
\[B = B_f \lor B_g \]

Lemma:

\[L(\forall(B) = \{ w \in A^+ \mid f(w) = g(w) \} \]

Proof:

"\(\subseteq\)" : Let \(w \in L(\forall(B) \). Then, \(w \in A^+ \) and, for all \(\tau \in \text{Rates} \), \(w \in L(B_f, \tau) \) or \(w \in L(B_g, \tau) \), i.e., \(f(w).2 \not\leq \text{dir}(\tau) \) or \(g(w).2 \leq \text{dir}(\tau) \). Pick one \(\tau \) such that \(f(w).2 \leq \text{dir}(\tau) \). As then \(g(w).2 \leq \text{dir}(\tau) \) and \(f(w), g(w) \in \{0, 1\}^* \), we have \(f(w) = g(w) \).

"\(\supseteq\)" : Let \(w \in A^+ \) such that \(f(w) = g(w) \). Let \(\tau \in \text{Rates} \). Trivially, it holds \(f(w).2 \not\leq \text{dir}(\tau) \) or \(f(w).2 \leq \text{dir}(\tau) \). As \(f(w) = g(w) \), the latter implies \(g(w).2 \leq \text{dir}(\tau) \). Therefore, \(w \in L(B, \tau) \). We conclude \(w \in L(\forall(B) \).

\[\square \]
It remains to build B_f and B_g. Given $a \in A$, $\sigma = d_1 \ldots d_n \in \{0, 1, 2\}^+$ (with $d_j \in \{0, 1, 2\}$ for any $j \in \{1, \ldots, n\}$) and $i \in \{1, 2\}$, we use the transition macro:
It remains to build B_f and B_g. Given $a \in A$, $\sigma = d_1 \ldots d_n \in \{0, 1, 2\}^+$ (with $d_j \in \{0, 1, 2\}$ for any $j \in \{1, \ldots, n\}$) and $i \in \{1, 2\}$, we use the transition macro:

$$s \xrightarrow{(a, \sigma)} r_i$$

which actually stands for the following sequence of transitions:
PCP encoding

The final automaton B is given by the following figure. Hereby, its left part depicts B_f, its right part B_g.
PCP encoding

The final automaton \mathcal{B} is given by the following figure. Hereby, its left part depicts \mathcal{B}_f, its right part \mathcal{B}_g.

This concludes the proof of undecidability.

To show the same for DTA, let $\mathcal{D} = \mathcal{B}[x] \parallel \mathcal{B}[y]$ where we add invariants $x \leq 0 \land y \leq 0$:

$$L_\forall(\mathcal{D}) = L_\forall(\mathcal{B})$$
Undecidability of the universal semantics

Theorem: Undecidability

Let D be an icTA/DTA.

emptiness: $L_\forall(D) = \emptyset$ is undecidable.

universality: $L_\forall(D) = \Sigma^*$ is undecidable.

Even for 2 processes, 1 clock each and bounded drifts: $\exists \alpha > 0, \forall t > 0,$

$$1 - \alpha \leq \frac{\tau_q(t)}{\tau_p(t)} < 1 + \alpha \quad \text{or} \quad |\tau_q(t) - \tau_p(t)| \leq \alpha$$

Corollary: Positive specifications

$\text{Good} \subseteq L_\forall(D)$

Model checking regular positive specifications for DTA is undecidable.
Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability

Reactive Semantics

Summary

Message Sequence Charts with Timing Constraints (TC-MSCs)

Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints
Timed Channel Systems

Time(d) Petri Nets

Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Reactive semantics

Goal of this section: Define a (non-trivial) reactive semantics such that:

Theorem: Regularity

For all icTA \mathcal{B}:

- $L_{react}(\mathcal{B})$ is regular
- $L_{react}(\mathcal{B}) \subseteq L_{\forall}(\mathcal{B})$
Reactive semantics

Goal of this section: Define a (non-trivial) reactive semantics such that:

Theorem: Regularity
For all icTA B:
- $L_{react}(B)$ is regular
- $L_{react}(B) \subseteq L_\forall(B)$

Corollary: Positive specifications
Model checking regular positive specifications is decidable for the reactive semantics.

$$\text{Good} \subseteq L_{react}(B)$$
Existential semantics: 1-Player game

- Player 1 controls both transitions and time
- \(L_\exists(D) = \{ w \in \Sigma^* \mid \text{Player 1 has a winning strategy for } w \} \)
Semantics as a game

Existential semantics: 1-Player game
- Player 1 controls both transitions and time
- $L_\exists(D) = \{ w \in \Sigma^* | \text{Player 1 has a winning strategy for } w \}$

Universal semantics: 2-Player game
- Player 1 controls transitions
- Player 2 controls time
- $L_\forall(D) = \{ w \in \Sigma^* | \text{Player 1 has a winning strategy for } w \}$
Semantics as a game

Existential semantics: 1-Player game
- Player 1 controls both transitions and time
- $L_\exists(D) = \{ w \in \Sigma^* | \text{Player 1 has a winning strategy for } w \}$

Universal semantics: 2-Player game with imperfect information
- Player 1 controls transitions
- Player 2 controls time with imperfect information
- $L_\forall(D) = \{ w \in \Sigma^* | \text{Player 1 has a winning strategy for } w \}$
Semantics as a game

Existential semantics: 1-Player game
- Player 1 controls both transitions and time
- \(L_\exists(D) = \{ w \in \Sigma^* \mid \text{Player 1 has a winning strategy for } w \} \)

Universal semantics: 2-Player game with imperfect information
- Player 1 controls transitions
- Player 2 controls time with imperfect information
- \(L_\forall(D) = \{ w \in \Sigma^* \mid \text{Player 1 has a winning strategy for } w \} \)

Reactive semantics: 2-Player game
- Player 1 controls transitions
- Player 2 controls time
- \(L_{\text{react}}(D) = \{ w \in \Sigma^* \mid \text{Player 1 has a winning strategy for } w \} \)
Reactive Semantics

Idea:

- System observes current region and controls discrete transitions
- Environment controls how local times evolve (time-elapse transitions)
- Not turn-based: system may execute several discrete transitions
Reactive Semantics

Idea:
- System observes current region and controls discrete transitions
- Environment controls how local times evolve (time-elapse transitions)
- Not turn-based: system may execute several discrete transitions

\[L_{\text{react}}(D) = \{ w \in \Sigma^* \mid \text{System has a winning strategy for } w \} \]
An alternating automaton (AA) is a tuple $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ where

- S, Σ, s_0, and F are as usual, and
- $\delta : S \times \Sigma \epsilon \rightarrow \mathbb{B}^+(S)$ is the \textit{transition function}.

Here, $\mathbb{B}^+(S)$ denotes positive boolean combinations of states from S.

Reactive Semantics

Definition: alternating automaton

An alternating automaton (AA) is a tuple $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ where

- S, Σ, s_0, and F are as usual, and
- $\delta : S \times \Sigma \epsilon \rightarrow \mathbb{B}^+(S)$ is the \textit{transition function}.

Here, $\mathbb{B}^+(S)$ denotes positive boolean combinations of states from S.

Reactive Semantics

Definition: alternating automaton

An alternating automaton (AA) is a tuple $A = (S, \Sigma, \delta, s_0, F)$ where

- S, Σ, s_0, and F are as usual, and
- $\delta : S \times \Sigma \epsilon \rightarrow \mathbb{B}^+(S)$ is the transition function.

Here, $\mathbb{B}^+(S)$ denotes positive boolean combinations of states from S.

A run of A on $w = a_1 \ldots a_n \in \Sigma^*$ is a labeled finite tree $\rho = (V, \sigma, \mu)$ where

- $V \subseteq \mathbb{N}^*$ is the nonempty, finite, prefix-closed set of nodes,
- $\sigma : V \rightarrow S$ and $\mu : V \rightarrow \{0, \ldots, n\}$ are labeling functions.
Reactive Semantics

Definition: alternating automaton

An alternating automaton (AA) is a tuple $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ where

- S, Σ, s_0, and F are as usual, and
- $\delta : S \times \Sigma \epsilon \rightarrow \mathbb{B}^+(S)$ is the transition function.

Here, $\mathbb{B}^+(S)$ denotes positive boolean combinations of states from S.

A run of \mathcal{A} on $w = a_1 \ldots a_n \in \Sigma^*$ is a labeled finite tree $\rho = (V, \sigma, \mu)$ where

- $V \subseteq \mathbb{N}^*$ is the nonempty, finite, prefix-closed set of nodes,
- $\sigma : V \rightarrow S$ and $\mu : V \rightarrow \{0, \ldots, n\}$ are labeling functions such that, for each node $u \in V$, the following hold:
 - if u is the root, then $\sigma(u) = s_0$ and $\mu(u) = 0$
Reactive Semantics

Definition: alternating automaton

An alternating automaton (AA) is a tuple \(A = (S, \Sigma, \delta, s_0, F) \) where

- \(S, \Sigma, s_0, \) and \(F \) are as usual, and
- \(\delta : S \times \Sigma \rightarrow \mathbb{B}^+(S) \) is the *transition function*.

Here, \(\mathbb{B}^+(S) \) denotes positive boolean combinations of states from \(S \).

A run of \(A \) on \(w = a_1 \ldots a_n \in \Sigma^* \) is a labeled finite tree \(\rho = (V, \sigma, \mu) \) where

- \(V \subseteq \mathbb{N}^* \) is the nonempty, finite, prefix-closed set of nodes,
- \(\sigma : V \rightarrow S \) and \(\mu : V \rightarrow \{0, \ldots, n\} \) are labeling functions

such that, for each node \(u \in V \), the following hold:

- if \(u \) is the root, then \(\sigma(u) = s_0 \) and \(\mu(u) = 0 \)
- if \(u \) is not a leaf (i.e., \(\text{children}(u) \neq \emptyset \)), then we have
Reactive Semantics

Definition: alternating automaton

An alternating automaton (AA) is a tuple $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ where

- S, Σ, s_0, and F are as usual, and
- $\delta : S \times \Sigma^c \rightarrow \mathbb{B}^+(S')$ is the transition function.

Here, $\mathbb{B}^+(S')$ denotes positive boolean combinations of states from S.

A run of \mathcal{A} on $w = a_1 \ldots a_n \in \Sigma^*$ is a labeled finite tree $\rho = (V, \sigma, \mu)$ where

- $V \subseteq \mathbb{N}^*$ is the nonempty, finite, prefix-closed set of nodes,
- $\sigma : V \rightarrow S$ and $\mu : V \rightarrow \{0, \ldots, n\}$ are labeling functions

such that, for each node $u \in V$, the following hold:

- if u is the root, then $\sigma(u) = s_0$ and $\mu(u) = 0$
- if u is not a leaf (i.e., $\text{children}(u) \neq \emptyset$), then we have
 - either $\mu(u') = \mu(u)$ for all $u' \in \text{children}(u)$ and
 $\{\sigma(u') \mid u' \in \text{children}(u)\} \models \delta(\sigma(u), \varepsilon)$
Reactive Semantics

Definition: alternating automaton

An alternating automaton (AA) is a tuple $A = (S, \Sigma, \delta, s_0, F)$ where

- S, Σ, s_0, and F are as usual, and
- $\delta : S \times \Sigma_\varepsilon \rightarrow \mathbb{B}^+(S)$ is the transition function.

Here, $\mathbb{B}^+(S)$ denotes positive boolean combinations of states from S.

A run of A on $w = a_1 \ldots a_n \in \Sigma^*$ is a labeled finite tree $\rho = (V, \sigma, \mu)$ where

- $V \subseteq \mathbb{N}^*$ is the nonempty, finite, prefix-closed set of nodes,
- $\sigma : V \rightarrow S$ and $\mu : V \rightarrow \{0, \ldots, n\}$ are labeling functions

such that, for each node $u \in V$, the following hold:

- if u is the root, then $\sigma(u) = s_0$ and $\mu(u) = 0$
- if u is not a leaf (i.e., $\text{children}(u) \neq \emptyset$), then we have
 - either $\mu(u') = \mu(u)$ for all $u' \in \text{children}(u)$ and $\{\sigma(u') \mid u' \in \text{children}(u)\} \models \delta(\sigma(u), \varepsilon)$
 - or $\mu(u') = \mu(u) + 1 = i \leq n$ for all $u' \in \text{children}(u)$ and $\{\sigma(u') \mid u' \in \text{children}(u)\} \models \delta(\sigma(u), a_i)$
Reactive Semantics

Definition: alternating automaton

An alternating automaton (AA) is a tuple $A = (S, \Sigma, \delta, s_0, F)$ where

- S, Σ, s_0, and F are as usual, and
- $\delta : S \times \Sigma_\varepsilon \to \mathbb{B}^+(S)$ is the *transition function*.

Here, $\mathbb{B}^+(S)$ denotes positive boolean combinations of states from S.

A run of A on $w = a_1 \ldots a_n \in \Sigma^*$ is a labeled finite tree $\rho = (V, \sigma, \mu)$ where

- $V \subseteq \mathbb{N}^*$ is the nonempty, finite, prefix-closed set of nodes,
- $\sigma : V \to S$ and $\mu : V \to \{0, \ldots, n\}$ are labeling functions such that, for each node $u \in V$, the following hold:
 - if u is the root, then $\sigma(u) = s_0$ and $\mu(u) = 0$,
 - if u is not a leaf (i.e., $\text{children}(u) \neq \emptyset$), then we have
 - either $\mu(u') = \mu(u)$ for all $u' \in \text{children}(u)$ and
 $\{\sigma(u') \mid u' \in \text{children}(u)\} \models \delta(\sigma(u), \varepsilon)$
 - or $\mu(u') = \mu(u) + 1 = i \leq n$ for all $u' \in \text{children}(u)$ and
 $\{\sigma(u') \mid u' \in \text{children}(u)\} \models \delta(\sigma(u), a_i)$

The run is accepting if all leaves are labeled with $F \times \{n\}$.
Reactive Semantics

Definition: alternating automaton

An alternating automaton (AA) is a tuple $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ where

- S, Σ, s_0, and F are as usual, and
- $\delta : S \times \Sigma \epsilon \rightarrow \mathbb{B}^+(S)$ is the *transition function*.

Here, $\mathbb{B}^+(S)$ denotes positive boolean combinations of states from S.

A run of \mathcal{A} on $w = a_1 \ldots a_n \in \Sigma^*$ is a labeled finite tree $\rho = (V, \sigma, \mu)$ where

- $V \subseteq \mathbb{N}^*$ is the nonempty, finite, prefix-closed set of nodes,
- $\sigma : V \rightarrow S$ and $\mu : V \rightarrow \{0, \ldots, n\}$ are labeling functions

such that, for each node $u \in V$, the following hold:

- if u is the root, then $\sigma(u) = s_0$ and $\mu(u) = 0$
- if u is not a leaf (i.e., $\text{children}(u) \neq \emptyset$), then we have
 - either $\mu(u') = \mu(u)$ for all $u' \in \text{children}(u)$ and $\{\sigma(u') \mid u' \in \text{children}(u)\} \models \delta(\sigma(u), \epsilon)$
 - or $\mu(u') = \mu(u) + 1 = i \leq n$ for all $u' \in \text{children}(u)$ and $\{\sigma(u') \mid u' \in \text{children}(u)\} \models \delta(\sigma(u), a_i)$

The run is accepting if all leaves are labeled with $F \times \{n\}$. The set of words from Σ^* that come with an accepting run is denoted by $L(\mathcal{A})$.
Given an AA A with n states, one can construct a nondeterministic finite automaton with $2^{O(n^2)}$ states that recognizes $L(A)$.
Given an AA \mathcal{A} with n states, one can construct a nondeterministic finite automaton with $2^{O(n^2)}$ states that recognizes $L(\mathcal{A})$.

Let $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA over Proc. We associate with \mathcal{B} an AA $\mathcal{A}_B = (S', \Sigma, \delta', s'_0, F')$ as follows:
Given an AA A with n states, one can construct a nondeterministic finite automaton with $2^\mathcal{O}(n^2)$ states that recognizes $L(A)$.

Let $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA over Proc. We associate with B an AA $A_B = (S', \Sigma, \delta', s'_0, F')$ as follows:

- $S' = S \times \text{Regions}(B) \times \{\exists, \forall\}$ and $F' = F \times \text{Regions}(B) \times \{\exists, \forall\}$
Given an AA \mathcal{A} with n states, one can construct a nondeterministic finite automaton with $2^{O(n^2)}$ states that recognizes $L(\mathcal{A})$.

Let $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA over Proc. We associate with \mathcal{B} an AA $\mathcal{A}_B = (S', \Sigma, \delta', s'_0, F')$ as follows:

- $S' = S \times \text{Regions}(\mathcal{B}) \times \{\exists, \forall\}$ and $F' = F \times \text{Regions}(\mathcal{B}) \times \{\exists, \forall\}$
- $s'_0 = (s_0, [\nu], \exists)$ where $\nu(x) = 0$ for each $x \in X$
Given an AA \mathcal{A} with n states, one can construct a nondeterministic finite automaton with $2^{O(n^2)}$ states that recognizes $L(\mathcal{A})$.

Let $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA over $Proc$. We associate with \mathcal{B} an AA $\mathcal{A}_\mathcal{B} = (S', \Sigma, \delta', s'_0, F')$ as follows:

1. $S' = S \times \text{Regions}(\mathcal{B}) \times \{\exists, \forall\}$ and $F' = F \times \text{Regions}(\mathcal{B}) \times \{\exists, \forall\}$
2. $s'_0 = (s_0, [\nu], \exists)$ where $\nu(x) = 0$ for each $x \in X$
3. For $(s, \gamma) \in S \times \text{Regions}(\mathcal{B})$ and $a \in \Sigma_{\varepsilon}$:
 $$\delta'((s, \gamma, \forall), a) = \begin{cases} \text{False} & \text{if } a \neq \varepsilon \text{ or } \gamma \text{ maximal} \end{cases}$$
Reactive Semantics

Lemma: Birget 1993

Given an AA A with n states, one can construct a nondeterministic finite automaton with $2^{O(n^2)}$ states that recognizes $L(A)$.

Let $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA over $Proc$. We associate with B an AA $A_B = (S', \Sigma, \delta', s'_0, F')$ as follows:

- $S' = S \times \text{Regions}(B) \times \{\exists, \forall\}$ and $F' = F \times \text{Regions}(B) \times \{\exists, \forall\}$
- $s'_0 = (s_0, [\nu], \exists)$ where $\nu(x) = 0$ for each $x \in X$
- For $(s, \gamma) \in S \times \text{Regions}(B)$ and $a \in \Sigma_\varepsilon$:

 $$\delta'((s, \gamma, \forall), a) = \begin{cases}
 \text{False} & \text{if } a \neq \varepsilon \text{ or } \gamma \text{ maximal} \\
 \land \{(s, \gamma', \exists) \mid \gamma \preceq \gamma'\} & \text{otherwise}
 \end{cases}$$
Given an AA A with n states, one can construct a nondeterministic finite automaton with $2^{O(n^2)}$ states that recognizes $L(A)$.

Let $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA over Proc. We associate with B an AA $A_B = (S', \Sigma, \delta', s_0', F')$ as follows:

- $S' = S \times \text{Regions}(B) \times \{\exists, \forall\}$ and $F' = F \times \text{Regions}(B) \times \{\exists, \forall\}$
- $s_0' = (s_0, [\nu], \exists)$ where $\nu(x) = 0$ for each $x \in X$
- for $(s, \gamma) \in S \times \text{Regions}(B)$ and $a \in \Sigma_\varepsilon$:

 $\delta'((s, \gamma, \forall), a) = \begin{cases} False & \text{if } a \neq \varepsilon \text{ or } \gamma \text{ maximal} \\ \land \{(s, \gamma', \exists) | \gamma \preceq \gamma'\} & \text{otherwise} \end{cases}$

 $\delta'((s, \gamma, \exists), a) = \begin{cases} \lor \{(s', \gamma', \exists) | (s, \gamma) \xrightarrow{a} (s', \gamma')\} & \text{if } a \neq \varepsilon \text{ or } \gamma \text{ maximal} \end{cases}$
Reactive Semantics
Lemma: Birget 1993

Given an AA A with n states, one can construct a nondeterministic finite automaton with $2^{O(n^2)}$ states that recognizes $L(A)$.

Let $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA over Proc. We associate with B an AA $A_B = (S', \Sigma, \delta', s'_0, F')$ as follows:

- $S' = S \times \text{Regions}(B) \times \{\exists, \forall\}$ and $F' = F \times \text{Regions}(B) \times \{\exists, \forall\}$
- $s'_0 = (s_0, [\nu], \exists)$ where $\nu(x) = 0$ for each $x \in X$
- For $(s, \gamma) \in S \times \text{Regions}(B)$ and $a \in \Sigma_\varepsilon$:

$$\delta'((s, \gamma, \forall), a) = \begin{cases} \text{False} & \text{if } a \neq \varepsilon \text{ or } \gamma \text{ maximal} \\ \land \{ (s, \gamma', \exists) \mid \gamma \preceq \gamma' \} & \text{otherwise} \end{cases}$$

$$\delta'((s, \gamma, \exists), a) = \begin{cases} \lor \{ (s', \gamma', \exists) \mid (s, \gamma) \xrightarrow{a}_d (s', \gamma') \} & \text{if } a \neq \varepsilon \text{ or } \gamma \text{ maximal} \\ (s, \gamma, \forall) \lor \lor \{ (s', \gamma', \exists) \mid (s, \gamma) \xrightarrow{\varepsilon}_d (s', \gamma') \} & \text{otherwise} \end{cases}$$

where \xrightarrow{a}_d denotes a discrete transition of the region automaton R_B.
Reactive Semantics

Lemma: Birget 1993

Given an AA \mathcal{A} with n states, one can construct a nondeterministic finite automaton with $2^{\mathcal{O}(n^2)}$ states that recognizes $L(\mathcal{A})$.

Let $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ be an icTA over Proc. We associate with \mathcal{B} an AA $\mathcal{A}_\mathcal{B} = (S', \Sigma, \delta', s'_0, F')$ as follows:

- $S' = S \times \text{Regions}(\mathcal{B}) \times \{\exists, \forall\}$ and $F' = F \times \text{Regions}(\mathcal{B}) \times \{\exists, \forall\}$
- $s'_0 = (s_0, [\nu], \exists)$ where $\nu(x) = 0$ for each $x \in X$
- for $(s, \gamma) \in S \times \text{Regions}(\mathcal{B})$ and $a \in \Sigma_\varepsilon$:
 \[
 \delta'((s, \gamma, \forall), a) = \begin{cases}
 \text{False} & \text{if } a \neq \varepsilon \text{ or } \gamma \text{ maximal} \\
 \bigwedge \{(s, \gamma', \exists) \mid \gamma \preceq \gamma'\} & \text{otherwise}
 \end{cases}
 \]
 \[
 \delta'((s, \gamma, \exists), a) = \begin{cases}
 \bigvee \{(s', \gamma', \exists) \mid (s, \gamma) \xrightarrow{a} (s', \gamma')\} & \text{if } a \neq \varepsilon \text{ or } \gamma \text{ maximal} \\
 (s, \gamma, \forall) \lor \bigvee \{(s', \gamma', \exists) \mid (s, \gamma) \xrightarrow{\varepsilon} (s', \gamma')\} & \text{otherwise}
 \end{cases}
 \]

where $\xrightarrow{a|\varepsilon}_d$ denotes a discrete transition of the region automaton $\mathcal{R}_\mathcal{B}$

Definition:

For an icTA \mathcal{B}, let $L_{\text{react}}(\mathcal{B}) = L(\mathcal{A}_\mathcal{B})$ be the reactive semantics of \mathcal{B}. Moreover, for a DTA \mathcal{D}, $L_{\text{react}}(\mathcal{D}) = L_{\text{react}}(\mathcal{B}_\mathcal{D})$ is the reactive semantics of \mathcal{D}.
Reactive Semantics

Example: \(L_{\text{react}}(\mathcal{B}) = \{a\} \)

The following theorem follows from the previous lemma:

Theorem:

Let \(\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi) \) be an icTA and let \(n \) be the number of states of \(\mathcal{R}_B \) (which is bounded by \(|S| \cdot (2C + 2)^{|X|} \cdot |X|! \) where \(C \) is the largest constant a clock is compared with in \(\mathcal{B} \)).
Reactive Semantics

Example: \(L_{\text{react}}(B) = \{ a \} \)

The following theorem follows from the previous lemma:

Theorem:

Let \(B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi) \) be an icTA and let \(n \) be the number of states of \(R_B \) (which is bounded by \(|S| \cdot (2C + 2)^{|X|} \cdot |X|! \) where \(C \) is the largest constant a clock is compared with in \(B \)). Then, \(L_{\text{react}}(B) \) is regular and one can compute a non-deterministic finite automaton with \(2^{O(n^2)} \) states that recognizes \(L_{\text{react}}(B) \).
Reactive Semantics

Lemma:

For any icTA \(B \), \(L_{\text{react}}(B) \subseteq L_{\forall}(B) \).

Proof: Assume \(B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi) \) and \(A_B = (S', \Sigma, \delta', s'_0, F') \). Let \(w \in L_{\text{react}}(B) = L(A_B) \) and \(\rho = (V, \sigma, \mu) \) be an accepting run of \(A_B \) on \(w \).
Lemma:
For any icTA \mathcal{B}, $L_{\text{react}}(\mathcal{B}) \subseteq L_{\forall}(\mathcal{B})$.

Proof: Assume $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ and $A_{\mathcal{B}} = (S', \Sigma, \delta', s'_0, F')$. Let $w \in L_{\text{react}}(\mathcal{B}) = L(A_{\mathcal{B}})$ and $\rho = (V, \sigma, \mu)$ be an accepting run of $A_{\mathcal{B}}$ on w. We pick $\tau \in Rates$.
Reactive Semantics

Lemma:
For any icTA B, $L_{react}(B) \subseteq L_{\forall}(B)$.

Proof: Assume $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ and $A_B = (S', \Sigma, \delta', s'_0, F')$. Let $w \in L_{react}(B) = L(A_B)$ and $\rho = (V, \sigma, \mu)$ be an accepting run of A_B on w. We pick $\tau \in Rates$. We construct inductively a maximal branch $u_0u_1\ldots u_n \in V^*$ in ρ and two sequences t_0, t_1, \ldots, t_n and $\nu_0, \nu_1, \ldots, \nu_n$:
Reactive Semantics

Lemma:
For any icTA \mathcal{B}, $L_{\text{react}}(\mathcal{B}) \subseteq L_{\forall}(\mathcal{B})$.

Proof: Assume $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ and $\mathcal{A}_{\mathcal{B}} = (S', \Sigma, \delta', s'_0, F')$. Let $w \in L_{\text{react}}(\mathcal{B}) = L(\mathcal{A}_{\mathcal{B}})$ and $\rho = (V, \sigma, \mu)$ be an accepting run of $\mathcal{A}_{\mathcal{B}}$ on w.
We pick $\tau \in \text{Rates}$. We construct inductively a maximal branch $u_0 u_1 \ldots u_n \in V^*$ in ρ and two sequences t_0, t_1, \ldots, t_n and $\nu_0, \nu_1, \ldots, \nu_n$:
1) Let $u_0 = \varepsilon$, $t_0 = 0$ and $\nu_0(x) = 0$ for all $x \in X$. Note that $\sigma(u_0) = (s_0, [\nu_0], \exists)$.
Reactive Semantics

Lemma:

For any icTA \mathcal{B}, $L_{\text{react}}(\mathcal{B}) \subseteq L_\forall(\mathcal{B})$.

Proof: Assume $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ and $\mathcal{A}_B = (S', \Sigma, \delta', s'_0, F')$. Let $w \in L_{\text{react}}(\mathcal{B}) = L(\mathcal{A}_B)$ and $\rho = (V, \sigma, \mu)$ be an accepting run of \mathcal{A}_B on w.

We pick $\tau \in \text{Rates}$. We construct inductively a maximal branch $u_0 u_1 \ldots u_n \in V^*$ in ρ and two sequences t_0, t_1, \ldots, t_n and $\nu_0, \nu_1, \ldots, \nu_n$:

1) Let $u_0 = \varepsilon$, $t_0 = 0$ and $\nu_0(x) = 0$ for all $x \in X$. Note that $\sigma(u_0) = (s_0, [\nu_0], \exists)$.

2) Assume that the sequences have been constructed up to k and that $\sigma(u_k) = (s_k, [\nu_k], p l_k)$.
Lemma: For any icTA \mathcal{B}, $L_{\text{react}}(\mathcal{B}) \subseteq L_{\forall}(\mathcal{B})$.

Proof: Assume $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ and $\mathcal{A}_B = (S', \Sigma, \delta', s'_0, F')$. Let $w \in L_{\text{react}}(\mathcal{B}) = L(\mathcal{A}_B)$ and $\rho = (V, \sigma, \mu)$ be an accepting run of \mathcal{A}_B on w. We pick $\tau \in \text{Rates}$. We construct inductively a maximal branch $u_0u_1\ldots u_n \in V^*$ in ρ and two sequences t_0, t_1, \ldots, t_n and $\nu_0, \nu_1, \ldots, \nu_n$:

1) Let $u_0 = \varepsilon$, $t_0 = 0$ and $\nu_0(x) = 0$ for all $x \in X$. Note that $\sigma(u_0) = (s_0, [\nu_0], \exists)$.

2) Assume that the sequences have been constructed up to k and that $\sigma(u_k) = (s_k, [\nu_k], pl_k)$. If u_k is a leaf, the construction is over and $k = n$.
Reactive Semantics

Lemma:

For any icTA \mathcal{B}, $L_{\text{react}}(\mathcal{B}) \subseteq L_{\forall}(\mathcal{B})$.

Proof: Assume $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ and $\mathcal{A}_\mathcal{B} = (S', \Sigma, \delta', s_0', F')$. Let $w \in L_{\text{react}}(\mathcal{B}) = L(\mathcal{A}_\mathcal{B})$ and $\rho = (V, \sigma, \mu)$ be an accepting run of $\mathcal{A}_\mathcal{B}$ on w.

We pick $\tau \in \text{Rates}$. We construct inductively a maximal branch $u_0u_1\ldots u_n \in V^*$ in ρ and two sequences t_0, t_1, \ldots, t_n and $\nu_0, \nu_1, \ldots, \nu_n$:

1) Let $u_0 = \varepsilon$, $t_0 = 0$ and $\nu_0(x) = 0$ for all $x \in X$. Note that $\sigma(u_0) = (s_0, [\nu_0], \exists)$.

2) Assume that the sequences have been constructed up to k and that $\sigma(u_k) = (s_k, [\nu_k], pl_k)$. If u_k is a leaf, the construction is over and $k = n$.

Otherwise:

- Assume that $pl_k = \forall$. Let $t_{k+1} > t_k$ be such that $[\nu_k] \preceq [\nu_{k+1}]$ with $\nu_{k+1} = \nu_k + \tau(t_{k+1}) - \tau(t_k)$.
Reactive Semantics

Lemma:

For any icTA \mathcal{B}, $L_{react}(\mathcal{B}) \subseteq L_\forall(\mathcal{B})$.

Proof: Assume $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ and $A_B = (S', \Sigma, \delta', s'_0, F')$. Let $w \in L_{react}(\mathcal{B}) = L(A_B)$ and $\rho = (V, \sigma, \mu)$ be an accepting run of A_B on w.

We pick $\tau \in Rates$. We construct inductively a maximal branch $u_0u_1 \ldots u_n \in V^*$ in ρ and two sequences t_0, t_1, \ldots, t_n and $\nu_0, \nu_1, \ldots, \nu_n$:

1) Let $u_0 = \varepsilon$, $t_0 = 0$ and $\nu_0(x) = 0$ for all $x \in X$. Note that $\sigma(u_0) = (s_0, [\nu_0], \exists)$.

2) Assume that the sequences have been constructed up to k and that $\sigma(u_k) = (s_k, [\nu_k], pl_k)$. If u_k is a leaf, the construction is over and $k = n$. Otherwise:

- Assume that $pl_k = \forall$. Let $t_{k+1} > t_k$ be such that $[\nu_k] \prec [\nu_{k+1}]$ with $\nu_{k+1} = \nu_k + \tau(t_{k+1}) - \tau(t_k)$. By definition of δ', there exists a child u_{k+1} of u_k such that $\sigma(u_{k+1}) = (s_k, [\nu_{k+1}], \exists)$.

- Assume now that $pl_k = \exists$.

Reactive Semantics

Lemma:

For any icTA B, $L_{react}(B) \subseteq L_\forall(B)$.

Proof: Assume $B = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ and $A_B = (S', \Sigma, \delta', s'_0, F')$. Let $w \in L_{react}(B) = L(A_B)$ and $\rho = (V, \sigma, \mu)$ be an accepting run of A_B on w.

We pick $\tau \in Rates$. We construct inductively a maximal branch $u_0u_1 \ldots u_n \in V^*$ in ρ and two sequences t_0, t_1, \ldots, t_n and $\nu_0, \nu_1, \ldots, \nu_n$:

1) Let $u_0 = \varepsilon$, $t_0 = 0$ and $\nu_0(x) = 0$ for all $x \in X$. Note that $\sigma(u_0) = (s_0, [\nu_0], \exists)$.

2) Assume that the sequences have been constructed up to k and that $\sigma(u_k) = (s_k, [\nu_k], pl_k)$. If u_k is a leaf, the construction is over and $k = n$.

Otherwise:

- Assume that $pl_k = \forall$. Let $t_{k+1} > t_k$ be such that $[\nu_k] \preceq [\nu_{k+1}]$ with $\nu_{k+1} = \nu_k + \tau(t_{k+1}) - \tau(t_k)$. By definition of δ', there exists a child u_{k+1} of u_k such that $\sigma(u_{k+1}) = (s_k, [\nu_{k+1}], \exists)$.

- Assume now that $pl_k = \exists$. Choose u_{k+1} in $\text{children}(u_k)$.
 - Either $\sigma(u_{k+1}) = (s_k, [\nu_k], \forall)$ and we let $t_{k+1} = t_k$ and $\nu_{k+1} = \nu_k$.
Lemma:

For any icTA \mathcal{B}, $L_{\text{react}}(\mathcal{B}) \subseteq L_\forall(\mathcal{B})$.

Proof: Assume $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ and $\mathcal{A}_\mathcal{B} = (S', \Sigma, \delta', s'_0, F')$. Let $w \in L_{\text{react}}(\mathcal{B}) = L(\mathcal{A}_\mathcal{B})$ and $\rho = (V, \sigma, \mu)$ be an accepting run of $\mathcal{A}_\mathcal{B}$ on w. We pick $\tau \in \text{Rates}$. We construct inductively a maximal branch $u_0 u_1 \ldots u_n \in V^*$ in ρ and two sequences t_0, t_1, \ldots, t_n and $\nu_0, \nu_1, \ldots, \nu_n$:

1) Let $u_0 = \varepsilon$, $t_0 = 0$ and $\nu_0(x) = 0$ for all $x \in X$. Note that $\sigma(u_0) = (s_0, [\nu_0], \exists)$.

2) Assume that the sequences have been constructed up to k and that $\sigma(u_k) = (s_k, [\nu_k], pl_k)$. If u_k is a leaf, the construction is over and $k = n$.

Otherwise:

- Assume that $pl_k = \forall$. Let $t_{k+1} > t_k$ be such that $[\nu_k] \prec [\nu_{k+1}]$ with $\nu_{k+1} = \nu_k + \tau(t_{k+1}) - \tau(t_k)$. By definition of δ', there exists a child u_{k+1} of u_k such that $\sigma(u_{k+1}) = (s_k, [\nu_{k+1}], \exists)$.

- Assume now that $pl_k = \exists$. Choose u_{k+1} in $\text{children}(u_k)$.
 - Either $\sigma(u_{k+1}) = (s_k, [\nu_k], \forall)$ and we let $t_{k+1} = t_k$ and $\nu_{k+1} = \nu_k$.
 - Otherwise, the move from u_k to u_{k+1} corresponds to some discrete transition of $\mathcal{R}_\mathcal{B}$ with label $a_{k+1} \in \Sigma_\varepsilon$ and some reset set $R \subseteq X$.
Reactive Semantics

Lemma:

For any icTA \mathcal{B}, $L_{\text{react}}(\mathcal{B}) \subseteq L_\forall(\mathcal{B})$.

Proof: Assume $\mathcal{B} = (S, \Sigma, X, T, \text{Inv}, s_0, F, \pi)$ and $\mathcal{A}_\mathcal{B} = (S', \Sigma', \delta', s'_0, F')$. Let $w \in L_{\text{react}}(\mathcal{B}) = L(\mathcal{A}_\mathcal{B})$ and $\rho = (V, \sigma, \mu)$ be an accepting run of $\mathcal{A}_\mathcal{B}$ on w.

We pick $\tau \in \text{Rates}$. We construct inductively a maximal branch $u_0u_1 \ldots u_n \in V^*$ in ρ and two sequences t_0, t_1, \ldots, t_n and $\nu_0, \nu_1, \ldots, \nu_n$:

1) Let $u_0 = \varepsilon$, $t_0 = 0$ and $\nu_0(x) = 0$ for all $x \in X$. Note that $\sigma(u_0) = (s_0, [\nu_0], \exists)$.
2) Assume that the sequences have been constructed up to k and that $\sigma(u_k) = (s_k, [\nu_k], pl_k)$. If u_k is a leaf, the construction is over and $k = n$.

Otherwise:

- Assume that $pl_k = \forall$. Let $t_{k+1} > t_k$ be such that $[\nu_k] \prec [\nu_{k+1}]$ with $\nu_{k+1} = \nu_k + \tau(t_{k+1}) - \tau(t_k)$. By definition of δ', there exists a child u_{k+1} of u_k such that $\sigma(u_{k+1}) = (s_k, [\nu_{k+1}], \exists)$.

- Assume now that $pl_k = \exists$. Choose u_{k+1} in $\text{children}(u_k)$.
 - Either $\sigma(u_{k+1}) = (s_k, [\nu_k], \forall)$ and we let $t_{k+1} = t_k$ and $\nu_{k+1} = \nu_k$.
 - Otherwise, the move from u_k to u_{k+1} corresponds to some discrete transition of $\mathcal{R}_\mathcal{B}$ with label $a_{k+1} \in \Sigma_\varepsilon$ and some reset set $R \subseteq X$. We let $t_{k+1} = t_k$ and $\nu_{k+1} = \nu_k[R \leftarrow 0]$ so that we have $\sigma(u_{k+1}) = (s_{k+1}, [\nu_{k+1}], \exists)$.
Lemma:
For any icTA \(B \), \(L_{\text{react}}(B) \subseteq L_{\forall}(B) \).

Proof (cntd):
The discrete moves along the constructed branch correspond to the sequence 0 < \(i_1 < \cdots < i_\ell \leq n \) of indices \(k \) such that \(pl_{k-1} = pl_k = \exists \).
Lemma:
For any icTA \mathcal{B}, $L_{\text{react}}(\mathcal{B}) \subseteq L_\forall(\mathcal{B})$.

Proof (cntd):
The discrete moves along the constructed branch correspond to the sequence $0 < i_1 < \cdots < i_\ell \leq n$ of indices k such that $pl_{k-1} = pl_k = \exists$. As ρ is an accepting run for w, we have $w = a_{i_1} \cdot a_{i_2} \cdot \ldots \cdot a_{i_\ell}$ and $s_{i_\ell} = s_n \in F$. One can verify that the sequence

$$(s_0, \nu_0) \xrightarrow{a_{i_1}, t_{i_1}} (s_{i_1}, \nu_{i_1}) \xrightarrow{a_{i_2}, t_{i_2}} \ldots \xrightarrow{a_{i_\ell}, t_{i_\ell}} (s_{i_\ell}, \nu_{i_\ell})$$

is a τ-run of \mathcal{B} so that $w \in L(\mathcal{B}, \tau)$. \qed
Reactive Semantics

Lemma:
Suppose that $|Proc| \geq 2$. There are some DTA \mathcal{D} over $Proc$ and some $\tau \in Rates$ such that $L_{\text{react}}(\mathcal{D}) \subseteq L_{\forall}(\mathcal{D}) \subseteq L(\mathcal{D}, \tau) \subseteq L_{\exists}(\mathcal{D})$.

Example: (Proof)
Consider the following icTA \mathcal{B} (which can also be viewed as a DTA):

- $L_{\exists}(\mathcal{B}) = \{a, ab, b, c\}$
- $L(\mathcal{B}, \text{id}) = \{a, ab, b\}$
- $L_{\forall}(\mathcal{B}) = \{a, ab\}$
- $L_{\text{react}}(\mathcal{B}) =$
Lemma:

Suppose that $|Proc| \geq 2$. There are some DTA \mathcal{D} over $Proc$ and some $\tau \in Rates$ such that $L_{\text{react}}(\mathcal{D}) \subseteq L(\mathcal{D}, \tau) \subseteq L(\mathcal{D})$.

Example: (Proof)

Consider the following icTA \mathcal{B} (which can also be viewed as a DTA):

- $L_{\exists}(\mathcal{B}) = \{a, ab, b, c\}$
- $L(\mathcal{B}, \text{id}) = \{a, ab, b\}$
- $L_{\forall}(\mathcal{B}) = \{a, ab\}$
- $L_{\text{react}}(\mathcal{B}) = \{a\}$
Exercise:

Consider the icTA $\mathcal{B} = (\{s_0, \ldots, s_5\}, \{a, b\}, \{x, y\}, T, \text{Inv}, s_0, \{s_3, s_4, s_5\}, \pi)$ over $\{p, q\}$ with $\pi(x) = p$ and $\pi(y) = q$, which is depicted below. Determine $L_\exists(\mathcal{B})$, $L_\forall(\mathcal{B})$, and $L_{\text{react}}(\mathcal{B})$ for invariants (a) $\varphi = \text{true}$, and (b) $\varphi = (x = 0) \land (y = 0)$. Justify your solution.

\begin{center}
\begin{tabular}{c|c|c}
\varphi = \text{true} & \varphi = (x = 0) \land (y = 0) \\
\hline
$L_\exists(\mathcal{B})$ & & \\
$L_\forall(\mathcal{B})$ & & \\
$L_{\text{react}}(\mathcal{B})$ & & \\
\end{tabular}
\end{center}
Consider the icTA $\mathcal{B} = (\{s_0, \ldots, s_5\}, \{a, b\}, \{x, y\}, T, \text{Inv}, s_0, \{s_3, s_4, s_5\}, \pi)$ over $\{p, q\}$ with $\pi(x) = p$ and $\pi(y) = q$, which is depicted below. Determine $L_\exists(\mathcal{B})$, $L_\forall(\mathcal{B})$, and $L_{\text{react}}(\mathcal{B})$ for invariants (a) $\varphi = \text{true}$, and (b) $\varphi = (x = 0) \land (y = 0)$. Justify your solution.

<table>
<thead>
<tr>
<th>φ</th>
<th>$L_\exists(\mathcal{B})$</th>
<th>$L_\forall(\mathcal{B})$</th>
<th>$L_{\text{react}}(\mathcal{B})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>${a}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varphi = (x = 0) \land (y = 0)$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Consider the icTA $\mathcal{B} = (\{s_0, \ldots, s_5\}, \{a, b\}, \{x, y\}, T, \text{Inv}, s_0, \{s_3, s_4, s_5\}, \pi)$ over $\{p, q\}$ with $\pi(x) = p$ and $\pi(y) = q$, which is depicted below. Determine $L_{\exists}(\mathcal{B})$, $L_{\forall}(\mathcal{B})$, and $L_{\text{react}}(\mathcal{B})$ for invariants (a) $\varphi = \text{true}$, and (b) $\varphi = (x = 0) \land (y = 0)$. Justify your solution.

<table>
<thead>
<tr>
<th>$\varphi = \text{true}$</th>
<th>$\varphi = (x = 0) \land (y = 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{\exists}(\mathcal{B})$</td>
<td>${a}$</td>
</tr>
<tr>
<td>$L_{\forall}(\mathcal{B})$</td>
<td>${a}$</td>
</tr>
<tr>
<td>$L_{\text{react}}(\mathcal{B})$</td>
<td></td>
</tr>
</tbody>
</table>
Exercise:

Consider the icTA $B = (\{s_0, \ldots, s_5\}, \{a, b\}, \{x, y\}, T, \text{Inv}, s_0, \{s_3, s_4, s_5\}, \pi)$ over $\{p, q\}$ with $\pi(x) = p$ and $\pi(y) = q$, which is depicted below. Determine $L_\exists(B)$, $L_\forall(B)$, and $L_{\text{react}}(B)$ for invariants (a) $\varphi = \text{true}$, and (b) $\varphi = (x = 0) \land (y = 0)$. Justify your solution.

\[
\begin{array}{ccc}
\text{ } & \varphi = \text{true} & \varphi = (x = 0) \land (y = 0) \\
L_\exists(B) & \{a\} & \\
L_\forall(B) & \{a\} & \\
L_{\text{react}}(B) & \{a\} & \\
\end{array}
\]
Consider the icTA $\mathcal{B} = (\{s_0, \ldots, s_5\}, \{a, b\}, \{x, y\}, T, \text{Inv}, s_0, \{s_3, s_4, s_5\}, \pi)$ over \{p, q\} with $\pi(x) = p$ and $\pi(y) = q$, which is depicted below. Determine $L_\exists(\mathcal{B})$, $L_\forall(\mathcal{B})$, and $L_{\text{react}}(\mathcal{B})$ for invariants (a) $\varphi = \text{true}$, and (b) $\varphi = (x = 0) \land (y = 0)$. Justify your solution.

<table>
<thead>
<tr>
<th>Invariant</th>
<th>$L_\exists(\mathcal{B})$</th>
<th>$L_\forall(\mathcal{B})$</th>
<th>$L_{\text{react}}(\mathcal{B})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varphi = \text{true}$</td>
<td>${a}$</td>
<td>${a}$</td>
<td>${a}$</td>
</tr>
<tr>
<td>$\varphi = (x = 0) \land (y = 0)$</td>
<td>${a}$</td>
<td>${a}$</td>
<td>${a}$</td>
</tr>
</tbody>
</table>
Consider the icTA $\mathcal{B} = (\{s_0, \ldots, s_5\}, \{a, b\}, \{x, y\}, T, \text{Inv}, s_0, \{s_3, s_4, s_5\}, \pi)$ over $\{p, q\}$ with $\pi(x) = p$ and $\pi(y) = q$, which is depicted below. Determine $L_\exists(\mathcal{B})$, $L_\forall(\mathcal{B})$, and $L_{react}(\mathcal{B})$ for invariants (a) $\varphi = \text{true}$, and (b) $\varphi = (x = 0) \land (y = 0)$. Justify your solution.
Exercise:

Consider the icTA $\mathcal{B} = (\{s_0, \ldots, s_5\}, \{a, b\}, \{x, y\}, T, \text{Inv}, s_0, \{s_3, s_4, s_5\}, \pi)$ over \{p, q\} with $\pi(x) = p$ and $\pi(y) = q$, which is depicted below. Determine $L_\exists(\mathcal{B})$, $L_\forall(\mathcal{B})$, and $L_{\text{react}}(\mathcal{B})$ for invariants (a) $\varphi = \text{true}$, and (b) $\varphi = (x = 0) \land (y = 0)$. Justify your solution.

<table>
<thead>
<tr>
<th></th>
<th>$\varphi = \text{true}$</th>
<th>$\varphi = (x = 0) \land (y = 0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_\exists(\mathcal{B})$</td>
<td>${a}$</td>
<td>${a}$</td>
</tr>
<tr>
<td>$L_\forall(\mathcal{B})$</td>
<td>${a}$</td>
<td>${a}$</td>
</tr>
<tr>
<td>$L_{\text{react}}(\mathcal{B})$</td>
<td>${a}$</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics

Summary

Message Sequence Charts with Timing Constraints (TC-MSCs)
Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints
Timed Channel Systems

Time(d) Petri Nets
Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Summary

- Distributed system using clocks with local times to synchronize
- Regular existential semantics suited for negative specifications
- Regular reactive semantics suited for positive specifications
- Undecidable universal semantics
Message Sequence Charts with timing constraints

Message Sequence Charts (MSCs):

- visual specification formalism
- ITU standardized
- describes the interaction between processes by means of message exchange

Example: MSC (with timing constraints)

```
User
  e1 [card] e3 [card-data] e7
  e2 [pin-request] e4 e5 e6 e8
ATM
Server
e3
e7

e8
```
Message Sequence Charts with timing constraints

Message Sequence Charts (MSCs):

- visual specification formalism
- ITU standardized
- describes the interaction between processes by means of message exchange

Example: MSC (with timing constraints)

![Diagram of an MSC with timing constraints](chart.png)
Introducing timing (T-MSC)
Introducing timing (T-MSC)

- Attach time stamps (which are non-negative real numbers) to events.
- This is the natural formalism for timing which extends from timed words.
- However, it is not natural for specification by engineers! So we introduce another model ...
Introducing timing (TC-MSC)

- We attach time intervals to “selected pairs” of events.
- We can restrict the pairs and thus control timing.
- This is natural for specification.
Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics

Summary

Message Sequence Charts with Timing Constraints (TC-MSCs)

Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints
Timed Channel Systems

Time(d) Petri Nets

Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Let us formalize MSCs, first without timing, and then with timing constraints.

We fix:

- $Proc$ (finite set of at least two processes)
MSCs

Let us formalize MSCs, first without timing, and then with timing constraints.

We fix:

- \textit{Proc} (finite set of at least two \textit{processes})
- \textit{Msg} (nonempty finite set of \textit{message types})
MSCs

Let us formalize MSCs, first without timing, and then with timing constraints.

We fix:

- \(\text{Proc} \) (finite set of at least two processes)
- \(\text{Msg} \) (nonempty finite set of message types)

These parameters determine:

- \(\text{Ch} := \{(p, q) \in \text{Proc} \times \text{Proc} \mid p \neq q\} \) (set of channels)
MSCs

Let us formalize MSCs, first without timing, and then with timing constraints.

We fix:

- $Proc$ (finite set of at least two processes)
- Msg (nonempty finite set of message types)

These parameters determine:

- $Ch := \{(p, q) \in Proc \times Proc \mid p \neq q\}$ (set of channels)
- $Act_p := \{p!q(m), p?q(m) \mid p \neq q \in Proc, m \in Msg\}$ (actions executed by process $p \in Proc$)
MSCs

Let us formalize MSCs, first without timing, and then with timing constraints.

We fix:

- \(\mathit{Proc} \) (finite set of at least two \textit{processes})
- \(\mathit{Msg} \) (nonempty finite set of \textit{message types})

These parameters determine:

- \(\mathit{Ch} := \{(p, q) \in \mathit{Proc} \times \mathit{Proc} \mid p \neq q\} \) (set of \textit{channels})
- \(\mathit{Act}_p := \{p!q(m), p?q(m) \mid p \neq q \in \mathit{Proc}, m \in \mathit{Msg}\} \) (\textit{actions} executed by process \(p \in \mathit{Proc} \))
- \(\mathit{Act} := \bigcup_{p \in \mathit{Proc}} \mathit{Act}_p \) (all the \textit{actions})
MSCs

We will model MSCs as *Act-labeled posets*:

Definition: labeled posets

An *Act-labeled poset* is a structure $M = (E, \leq, \lambda)$ where:

- (E, \leq) is a partially ordered set
MSCs

We will model MSCs as *Act-labeled posets*:

Definition: labeled posets

An *Act-labeled poset* is a structure $M = (E, \leq, \lambda)$ where:

- (E, \leq) is a partially ordered set
- $\lambda : E \rightarrow Act$
MSCs

We will model MSCs as *Act-labeled posets*:

Definition: labeled posets

An *Act-labeled poset* is a structure $M = (E, \leq, \lambda)$ where:

- (E, \leq) is a partially ordered set
- $\lambda : E \rightarrow Act$

Hereby, E will be the set of *events*, which are ordered by \leq.

Notation

- $\downarrow e := \{ e' \in E \mid e' \leq e \}$ (past of event $e \in E$)
MSCs

We will model MSCs as *Act-labeled posets*:

Definition: labeled posets

An *Act-labeled poset* is a structure $M = (E, \leq, \lambda)$ where:

- (E, \leq) is a partially ordered set
- $\lambda : E \rightarrow Act$

Hereby, E will be the set of events, which are ordered by \leq.

Notation

- $\downarrow e := \{ e' \in E \mid e' \leq e \}$ (past of event $e \in E$)
- $E_p := \{ e \in E \mid \lambda(e) \in Act_p \}$ (events of $p \in Proc$)
MSCs

We will model MSCs as \textit{Act-labeled posets}:

\textbf{Definition: labeled posets}

An \textit{Act-labeled poset} is a structure \(M = (E, \leq, \lambda) \) where:

\begin{itemize}
 \item \((E, \leq)\) is a partially ordered set
 \item \(\lambda : E \rightarrow \text{Act}\)
\end{itemize}

Hereby, \(E\) will be the set of \textit{events}, which are ordered by \(\leq\).

\textbf{Notation}

\begin{itemize}
 \item \(\downarrow e := \{e' \in E \mid e' \leq e\}\) (past of event \(e \in E\))
 \item \(E_p := \{e \in E \mid \lambda(e) \in \text{Act}_p\}\) (events of \(p \in \text{Proc}\))
 \item \(E_a := \{e \in E \mid \lambda(e) = a\}\) (events executing \(a \in \text{Act}\))
\end{itemize}
MSCs
We will model MSCs as \textit{Act-labeled posets}:

\textbf{Definition: labeled posets}

An \textit{Act-labeled poset} is a structure $M = (E, \leq, \lambda)$ where:

- (E, \leq) is a partially ordered set
- $\lambda : E \rightarrow Act$

Hereby, E will be the set of \textit{events}, which are ordered by \leq.

\textbf{Notation}

- $\downarrow e := \{ e' \in E \mid e' \leq e \}$ \textit{(past of event $e \in E$)}
- $E_p := \{ e \in E \mid \lambda(e) \in Act_p \}$ \textit{(events of $p \in Proc$)}
- $E_a := \{ e \in E \mid \lambda(e) = a \}$ \textit{(events executing $a \in Act$)}
- $<_p := < \cap (E_p \times E_p)$ \textit{(order on process $p \in Proc$)}
MSCs
We will model MSCs as *Act-labeled posets*:

Definition: labeled posets

An *Act-labeled poset* is a structure $M = (E, \leq, \lambda)$ where:

- (E, \leq) is a partially ordered set
- $\lambda : E \rightarrow Act$

Hereby, E will be the set of *events*, which are ordered by \leq.

Notation

- $\downarrow e := \{ e' \in E \mid e' \leq e \}$ (past of event $e \in E$)
- $E_p := \{ e \in E \mid \lambda(e) \in Act_p \}$ (events of $p \in Proc$)
- $E_a := \{ e \in E \mid \lambda(e) = a \}$ (events executing $a \in Act$)
- $<_p := < \cap (E_p \times E_p)$ (order on process $p \in Proc$)
- $<_{msg} \subseteq E \times E$ defined by $e <_{msg} e'$ if there are $(p, q) \in Ch$ and $m \in Msg$ such that $\lambda(e) = p!q(m), \lambda(e') = q?p(m)$,
MSCs

We will model MSCs as *Act-labeled posets*:

Definition: labeled posets

An *Act-labeled poset* is a structure \(M = (E, \leq, \lambda) \) where:

- \((E, \leq)\) is a partially ordered set
- \(\lambda : E \to Act\)

Hereby, \(E\) will be the set of *events*, which are ordered by \(\leq\).

Notation

- \(\downarrow e := \{e' \in E \mid e' \leq e\}\) (past of event \(e \in E\))
- \(E_p := \{e \in E \mid \lambda(e) \in Act_p\}\) (events of \(p \in Proc\))
- \(E_a := \{e \in E \mid \lambda(e) = a\}\) (events executing \(a \in Act\))
- \(<_p := < \cap (E_p \times E_p)\) (order on process \(p \in Proc\))
- \(<_{msg} \subseteq E \times E\) defined by \(e <_{msg} e'\) if there are \((p, q) \in Ch\) and \(m \in Msg\) such that \(\lambda(e) = p!q(m)\), \(\lambda(e') = q?p(m)\), and

\[
\downarrow e \cap \bigcup_{m' \in Msg} E_{p!q(m')} = \downarrow e' \cap \bigcup_{m' \in Msg} E_{q?p(m')}
\]
MSCs

Definition: MSC

An MSC is an Act-labeled poset $M = (E, \leq, \lambda)$ such that:
MSCs

Definition: MSC

An MSC is an Act-labeled poset $M = (E, \leq, \lambda)$ such that:

- for all $p \in Proc$, $<_p$ is a (strict) linear order
MSCs

Definition: MSC

An MSC is an \textit{Act}-labeled poset $M = (E, \leq, \lambda)$ such that:

- for all $p \in \textit{Proc}$, $<_p$ is a (strict) linear order
- for all $e \in E$, there is $e' \in E$ such that $e <_{\text{msg}} e'$ or $e' <_{\text{msg}} e$
MSCs

Definition: MSC

An MSC is an Act-labeled poset $M = (E, \leq, \lambda)$ such that:

- for all $p \in Proc$, $<_p$ is a (strict) linear order
- for all $e \in E$, there is $e' \in E$ such that $e <_{msg} e'$ or $e' <_{msg} e$
- $\leq = (<_{msg} \cup \bigcup_{p \in Proc} <_p)^*$
MSCs

Definition: MSC

An MSC is an Act-labeled poset $M = (E, \leq, \lambda)$ such that:

- for all $p \in Proc$, $<_p$ is a (strict) linear order
- for all $e \in E$, there is $e' \in E$ such that $e <_{msg} e'$ or $e' <_{msg} e$
- $\leq = (<_{msg} \cup \bigcup_{p \in Proc} <_p)^*$

Example: MSC

![Diagram of an MSC](image-url)
MSCs

Definition: MSC

An MSC is an Act-labeled poset $M = (E, \leq, \lambda)$ such that:

- for all $p \in Proc$, $<_p$ is a (strict) linear order
- for all $e \in E$, there is $e' \in E$ such that $e <_{msg} e'$ or $e' <_{msg} e$
- $\leq = (<_{msg} \cup \bigcup_{p \in Proc} _p <)^*$

Example: MSC

Here, $Proc = \{p, q, r\}$, $Msg = \{m_1, m_2\}$, and $E = \{e_1, e'_1, e_2, e'_2, e_3, e'_3\}$.
MSCs

Definition: MSC

An MSC is an *Act*-labeled poset $M = (E, \leq, \lambda)$ such that:

- for all $p \in Proc$, $<_p$ is a (strict) linear order
- for all $e \in E$, there is $e' \in E$ such that $e <_{msg} e'$ or $e' <_{msg} e$
- $\leq = (<_msg \cup \bigcup_{p \in Proc} <_p)^*$

Example: MSC

Here, $Proc = \{p, q, r\}$, $Msg = \{m_1, m_2\}$, and $E = \{e_1, e'_1, e_2, e'_2, e_3, e'_3\}$.
We have $\lambda(e_2) = q?p(m_1)$
MSCs

Definition: MSC

An MSC is an Act-labeled poset $M = (E, \leq, \lambda)$ such that:

- for all $p \in Proc$, $<_p$ is a (strict) linear order
- for all $e \in E$, there is $e' \in E$ such that $e <_{msg} e'$ or $e' <_{msg} e$
- $\leq = (<_{msg} \cup \bigcup_{p \in Proc} <_p)^*$

Example: MSC

Here, $Proc = \{p, q, r\}$, $Msg = \{m_1, m_2\}$, and $E = \{e_1, e'_1, e_2, e'_2, e_3, e'_3\}$.

We have $\lambda(e_2) = q?p(m_1)$, $e_1 <_{msg} e_2$
Definition: MSC

An MSC is an Act-labeled poset $M = (E, \leq, \lambda)$ such that:

- for all $p \in Proc$, $<_p$ is a (strict) linear order
- for all $e \in E$, there is $e' \in E$ such that $e <_{msg} e'$ or $e' <_{msg} e$
- $\leq = (<_{msg} \cup \bigcup_{p \in Proc} <_p)^*$

Example: MSC

Here, $Proc = \{p, q, r\}$, $Msg = \{m_1, m_2\}$, and $E = \{e_1, e'_1, e_2, e'_2, e_3, e'_3\}$.

We have $\lambda(e_2) = q?p(m_1)$, $e_1 <_{msg} e_2 \leq e_3$
MSCs

Definition: MSC

An MSC is an Act-labeled poset $M = (E, \leq, \lambda)$ such that:

- for all $p \in \text{Proc}$, $<_p$ is a (strict) linear order
- for all $e \in E$, there is $e' \in E$ such that $e <_{\text{msg}} e'$ or $e' <_{\text{msg}} e$
- $\leq = (<_\text{msg} \cup \bigcup_{p \in \text{Proc}} <_p)^*$

Example: MSC

Here, $\text{Proc} = \{p, q, r\}$, $\text{Msg} = \{m_1, m_2\}$, and $E = \{e_1, e'_1, e_2, e'_2, e_3, e'_3\}$. We have $\lambda(e_2) = q?p(m_1)$, $e_1 <_{\text{msg}} e_2 \leq e_3 <_r e'_3$.
MSCs

Definition: MSC

An MSC is an Act-labeled poset $M = (E, \leq, \lambda)$ such that:

- for all $p \in \text{Proc}$, $<_p$ is a (strict) linear order
- for all $e \in E$, there is $e' \in E$ such that $e <_{\text{msg}} e'$ or $e' <_{\text{msg}} e$
- $\leq = (<_{\text{msg}} \cup \bigcup_{p \in \text{Proc}} <_p)^*$

Example: MSC

![Diagram of MSC]

Here, $\text{Proc} = \{p, q, r\}$, $\text{Msg} = \{m_1, m_2\}$, and $E = \{e_1, e'_1, e_2, e'_2, e_3, e'_3\}$.

We have $\lambda(e_2) = q?p(m_1)$, $e_1 <_{\text{msg}} e_2 \leq e_3 <_r e'_3$, $e'_1 \not\leq e'_2$.
MSCs

Definition: MSC

An MSC is an Act-labeled poset $M = (E, \leq, \lambda)$ such that:

- for all $p \in \text{Proc}$, \prec_p is a (strict) linear order
- for all $e \in E$, there is $e' \in E$ such that $e \prec_{\text{msg}} e'$ or $e' \prec_{\text{msg}} e$
- $\leq = (\prec_{\text{msg}} \cup \bigcup_{p \in \text{Proc}} \prec_p)^*$

Example: MSC

![Diagram of MSC]

Here, $\text{Proc} = \{p, q, r\}$, $\text{Msg} = \{m_1, m_2\}$, and $E = \{e_1, e'_1, e_2, e'_2, e_3, e'_3\}$.

We have $\lambda(e_2) = q?p(m_1)$, $e_1 \prec_{\text{msg}} e_2 \leq e_3 <_r e'_3$, $e'_1 \not\leq e'_2$, and $e'_2 \not\leq e'_1$.
Plan

Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics

Summary

2 Message Sequence Charts with Timing Constraints (TC-MSCs)

Message Sequence Charts (MSCs)

Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints
Timed Channel Systems

Time(d) Petri Nets

Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
MSCs with timing constraints

Idea:
Annotate MSCs with timing constraints, which are taken from the set of intervals \(Int \) containing \([a, b], (a, b], [a, b), (a, b), [a, \infty), (a, \infty)\) where \(a, b \in \mathbb{N} \).
MSCs with timing constraints

Idea:
Annotate MSCs with timing constraints, which are taken from the set of intervals \(\text{Int} \) containing \([a, b], (a, b), [a, b), (a, b), [a, \infty), (a, \infty)\) where \(a, b \in \mathbb{N}\).

Definition: TC-MSC
An MSC with timing constraints (TC-MSC) is a pair \(TC = (M, C) \) where:
- \(M = (E, \leq, \lambda) \) is an MSC
An MSC with timing constraints (TC-MSC) is a pair $TC = (M, C)$ where:

- $M = (E, \leq, \lambda)$ is an MSC
- $C \subseteq (E \times E) \times \text{Int}$ is a set of timing constraints such that:
 - for all $((e, f), I) \in C$ and $((e', f'), I') \in C$, both $e < f$ and $(e, f) = (e', f')$ implies $I = I'$
MSCs with timing constraints

Idea:
Annotate MSCs with timing constraints, which are taken from the set of intervals \(\text{Int} \) containing \([a, b], (a, b], [a, b), (a, b), [a, \infty), (a, \infty)\) where \(a, b \in \mathbb{N}\).

Definition: TC-MSC
An MSC with timing constraints (TC-MSC) is a pair \(TC = (M, C) \) where:

- \(M = (E, \leq, \lambda) \) is an MSC
- \(C \subseteq (E \times E) \times \text{Int} \) is a set of timing constraints such that:
 for all \(((e, f), I) \in C \) and \(((e', f'), I') \in C \), both \(e < f \) and \((e, f) = (e', f') \) implies \(I = I' \)

Remark:
Thus, timing constraints are only allowed between ordered pairs of events, and each such pair has at most one constraint.
Realization of TC-MSC
Realization of TC-MSC
Realization of TC-MSC

\[(0,2) \]

\[[1,2] \]

\[[1,4] \]

\[[2,3] \]
Realization of TC-MSC
While TC-MSCs serve as specifications, concrete executions map, to each event, a
time stamp from $\mathbb{R}_{\geq 0}$. We call such a structure a timed MSC:

Definition: timed MSC

A *timed MSC* (T-MSC) is a pair $T = (M, \tau)$ where $M = (E, \leq, \lambda)$ is an MSC.
Realization of TC-MSC
While TC-MSCs serve as specifications, concrete executions map, to each event, a
time stamp from $\mathbb{R}_{\geq 0}$. We call such a structure a timed MSC:

Definition: timed MSC
A timed MSC (T-MSC) is a pair $T = (M, \tau)$ where $M = (E, \leq, \lambda)$ is an MSC and
$\tau : E \to \mathbb{R}_{\geq 0}$
Realization of TC-MSC

While TC-MSCs serve as specifications, concrete executions map, to each event, a time stamp from $\mathbb{R}_{\geq 0}$. We call such a structure a timed MSC:

Definition: timed MSC

A *timed MSC* (T-MSC) is a pair $T = (M, \tau)$ where $M = (E, \leq, \lambda)$ is an MSC and $\tau : E \rightarrow \mathbb{R}_{\geq 0}$ such that, for all $(e_1, e_2) \in \leq$, we have $\tau(e_1) \leq \tau(e_2)$.
Realization of TC-MSC

While TC-MSCs serve as specifications, concrete executions map, to each event, a time stamp from \(\mathbb{R}_{\geq 0} \). We call such a structure a timed MSC:

Definition: timed MSC

A *timed MSC (T-MSC)* is a pair \(T = (M, \tau) \) where \(M = (E, \leq, \lambda) \) is an MSC and \(\tau : E \rightarrow \mathbb{R}_{\geq 0} \) such that, for all \((e_1, e_2) \in \leq \), we have \(\tau(e_1) \leq \tau(e_2) \).

Definition: realization

Let \(TC = (M, C) \) with \(M = (E, \leq, \lambda) \) be a TC-MSC.
Realization of TC-MSC

While TC-MSCs serve as specifications, concrete executions map, to each event, a time stamp from $\mathbb{R}_{\geq 0}$. We call such a structure a timed MSC:

Definition: timed MSC

A *timed MSC* (T-MSC) is a pair $T = (M, \tau)$ where $M = (E, \leq, \lambda)$ is an MSC and $\tau : E \to \mathbb{R}_{\geq 0}$ such that, for all $(e_1, e_2) \in \leq$, we have $\tau(e_1) \leq \tau(e_2)$.

Definition: realization

Let $TC = (M, C)$ with $M = (E, \leq, \lambda)$ be a TC-MSC. A *realization* of TC is a T-MSC (M, τ).
Realization of TC-MSC

While TC-MSCs serve as specifications, concrete executions map, to each event, a time stamp from $\mathbb{R}_{\geq 0}$. We call such a structure a timed MSC:

Definition: timed MSC

A *timed MSC* (T-MSC) is a pair $T = (M, \tau)$ where $M = (E, \leq, \lambda)$ is an MSC and $\tau : E \rightarrow \mathbb{R}_{\geq 0}$ such that, for all $(e_1, e_2) \in \leq$, we have $\tau(e_1) \leq \tau(e_2)$.

Definition: realization

Let $TC = (M, C)$ with $M = (E, \leq, \lambda)$ be a TC-MSC. A *realization* of TC is a T-MSC (M, τ) such that, for all $((e_1, e_2), I) \in C$, we have $\tau(e_2) - \tau(e_1) \in I$.
Realization of TC-MSC

While TC-MSCs serve as specifications, concrete executions map, to each event, a time stamp from $\mathbb{R}_{\geq 0}$. We call such a structure a timed MSC:

Definition: timed MSC

A *timed MSC* (T-MSC) is a pair $T = (M, \tau)$ where $M = (E, \leq, \lambda)$ is an MSC and $\tau : E \to \mathbb{R}_{\geq 0}$ such that, for all $(e_1, e_2) \in \leq$, we have $\tau(e_1) \leq \tau(e_2)$.

Definition: realization

Let $TC = (M, C)$ with $M = (E, \leq, \lambda)$ be a TC-MSC. A realization of TC is a T-MSC (M, τ) such that, for all $((e_1, e_2), I) \in C$, we have $\tau(e_2) - \tau(e_1) \in I$. We say that TC is realizable if there is a realization of TC.
Realization of TC-MSC

While TC-MSCs serve as specifications, concrete executions map, to each event, a time stamp from $\mathbb{R}_{\geq 0}$. We call such a structure a timed MSC:

Definition: timed MSC

A *timed MSC* (T-MSC) is a pair $T = (M, \tau)$ where $M = (E, \leq, \lambda)$ is an MSC and $\tau : E \rightarrow \mathbb{R}_{\geq 0}$ such that, for all $(e_1, e_2) \in \leq$, we have $\tau(e_1) \leq \tau(e_2)$.

Definition: realization

Let $TC = (M, C)$ with $M = (E, \leq, \lambda)$ be a TC-MSC. A *realization* of TC is a T-MSC (M, τ) such that, for all $((e_1, e_2), I) \in C$, we have $\tau(e_2) - \tau(e_1) \in I$. We say that TC is *realizable* if there is a realization of TC.

Example: TC-MSC and realization

![Diagram of a card request scenario](image-url)
Realization of TC-MSC

While TC-MSCs serve as specifications, concrete executions map, to each event, a time stamp from \(\mathbb{R}_{\geq 0} \). We call such a structure a timed MSC:

Definition: timed MSC

A *timed MSC* (T-MSC) is a pair \(T = (M, \tau) \) where \(M = (E, \leq, \lambda) \) is an MSC and \(\tau : E \rightarrow \mathbb{R}_{\geq 0} \) such that, for all \((e_1, e_2) \in \leq \), we have \(\tau(e_1) \leq \tau(e_2) \).

Definition: realization

Let \(TC = (M, C) \) with \(M = (E, \leq, \lambda) \) be a TC-MSC. A *realization* of \(TC \) is a T-MSC \((M, \tau) \) such that, for all \(((e_1, e_2), I) \in C \), we have \(\tau(e_2) - \tau(e_1) \in I \). We say that \(TC \) is *realizable* if there is a realization of \(TC \).

Example: TC-MSC and realization

```
User          ATM          Server
\[0, 4\]      card         card-data       \[0, 2\]
            |                card-OK
pin-request                      |
```

[Diagram of the ATM process with time intervals marked as \([0, 4]\) for User, \([0, 2]\) for Server, and intervals for card, card-data, and card-OK events.]
Realization of TC-MSC

While TC-MSCs serve as specifications, concrete executions map, to each event, a time stamp from $\mathbb{R}_{\geq 0}$. We call such a structure a timed MSC:

Definition: timed MSC

A timed MSC (T-MSC) is a pair $T = (M, \tau)$ where $M = (E, \leq, \lambda)$ is an MSC and $\tau : E \rightarrow \mathbb{R}_{\geq 0}$ such that, for all $(e_1, e_2) \in \leq$, we have $\tau(e_1) \leq \tau(e_2)$.

Definition: realization

Let $TC = (M, C)$ with $M = (E, \leq, \lambda)$ be a TC-MSC. A realization of TC is a T-MSC (M, τ) such that, for all $((e_1, e_2), I) \in C$, we have $\tau(e_2) - \tau(e_1) \in I$. We say that TC is realizable if there is a realization of TC.

Example: TC-MSC and realization

```
User          ATM          Server
| 0: card      | 0: card-data  | 1: card-OK   |
| 3.9          | 1: pin-request| 2.3          |
```

[0, 4] \[0, 2\]
Plan

Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics

Summary

2 Message Sequence Charts with Timing Constraints (TC-MSCs)
Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)

Realizability of Single TC-MSCs

Message Sequence Graphs with Timing Constraints
Timed Channel Systems

Time(d) Petri Nets
Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Realizability problem for TC-MSCs

We consider the realizability problem for TC-MSCs:

Theorem: [Alur et al. 1996]

For a given TC-MSC $TC = (M, C)$ with $M = (E, \leq, \lambda)$, one can decide in time $O(|E|^3)$ if TC is realizable (and, if so, determine a realization of TC).
Realizability problem for TC-MSCs

We consider the realizability problem for TC-MSCs:

Theorem: [Alur et al. 1996]

For a given TC-MSC $TC = (M, C)$ with $M = (E, \leq, \lambda)$, one can decide in time $O(|E|^3)$ if TC is realizable (and, if so, determine a realization of TC).

Proof:

We show the theorem for the case where intervals are of the form $[a, b]$ or $[a, \infty)$.
Realizability problem for TC-MSCs

We consider the realizability problem for TC-MSCs:

Theorem: [Alur et al. 1996]

For a given TC-MSC $TC = (M, C)$ with $M = (E, \leq, \lambda)$, one can decide in time $O(|E|^3)$ if TC is realizable (and, if so, determine a realization of TC).

Proof:

We show the theorem for the case where intervals are of the form $[a, b]$ or $[a, \infty)$.

Idea:

Reduce realizability of TC-MSC to finding negative-weight cycles in a graph, which can be solved in cubic time.
Realizability problem for TC-MSCs

Example: realizable TC-MSC \((M, C)\)

\[
\begin{array}{c}
\quad
\end{array}
\]
Realizability problem for TC-MSCs

Example: realizable TC-MSC \((M, C)\)

\[
\begin{array}{c}
\begin{array}{c}
 p \\
 e_1 \\
 e_4 \\
 q \\
 e_2 \\
 e_3 \\
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
 [0, 4] \\
 m \\
 m \\
[4, \infty) \\
\end{array}
\end{array}
\]

Basic constraints

\[\tau(e_1) - \tau(e_2) \leq 0\]
Realizability problem for TC-MSCs

Example: realizable TC-MSC \((M, C)\)

```
\begin{align*}
\tau(e_1) - \tau(e_2) &\leq 0 \\
\tau(e_1) - \tau(e_3) &\leq 0
\end{align*}
```
Realizability problem for TC-MSCs

Example: realizable TC-MSC \((M, C)\)

\[
\begin{array}{c}
\text{Basic constraints} \\
\tau(e_1) - \tau(e_2) \leq 0 \\
\tau(e_1) - \tau(e_3) \leq 0 \\
\tau(e_1) - \tau(e_4) \leq 0 \\
\tau(e_2) - \tau(e_3) \leq 0 \\
\tau(e_2) - \tau(e_4) \leq 0 \\
\tau(e_3) - \tau(e_4) \leq 0 \\
\end{array}
\]
Realizability problem for TC-MSCs

Example: realizable TC-MSC (M, C)

![Diagram of realizable TC-MSC]

Basic constraints

\[
\begin{align*}
\tau(e_1) - \tau(e_2) &\leq 0 \\
\tau(e_1) - \tau(e_3) &\leq 0 \\
\tau(e_1) - \tau(e_4) &\leq 0 \\
\tau(e_2) - \tau(e_3) &\leq 0 \\
\tau(e_2) - \tau(e_4) &\leq 0 \\
\tau(e_3) - \tau(e_4) &\leq 0 \\
\tau(e_4) - \tau(e_1) &\leq 4
\end{align*}
\]
Realizability problem for TC-MSCs

Example: realizable TC-MSC \((M, C)\)

![Diagram of TC-MSC](https://example.com/diagram.png)

Basic constraints

\[
\begin{align*}
\tau(e_1) - \tau(e_2) & \leq 0 \\
\tau(e_1) - \tau(e_3) & \leq 0 \\
\tau(e_1) - \tau(e_4) & \leq 0 \\
\tau(e_2) - \tau(e_3) & \leq 0 \\
\tau(e_2) - \tau(e_4) & \leq 0 \\
\tau(e_3) - \tau(e_4) & \leq 0 \\
\tau(e_4) - \tau(e_1) & \leq 4 \\
\tau(e_2) - \tau(e_3) & \leq -4
\end{align*}
\]
Realizability problem for TC-MSCs

Example: realizable TC-MSC \((M, C)\)

![Diagram of realizable TC-MSC]

Basic constraints

\[
\begin{align*}
\tau(e_1) - \tau(e_2) &\leq 0 \\
\tau(e_1) - \tau(e_3) &\leq 0 \\
\tau(e_1) - \tau(e_4) &\leq 0 \\
\tau(e_2) - \tau(e_3) &\leq 0 \\
\tau(e_2) - \tau(e_4) &\leq 0 \\
\tau(e_3) - \tau(e_4) &\leq 0 \\
\tau(e_4) - \tau(e_1) &\leq 4 \\
\tau(e_2) - \tau(e_3) &\leq -4
\end{align*}
\]

\[\tau(f) - \tau(e) \leq b \Rightarrow e \xrightarrow{b} f\]
Realizability problem for TC-MSCs

Example: realizable TC-MSC (M, C)

Basic constraints

\[
\begin{align*}
\tau(e_1) - \tau(e_2) &\leq 0 \\
\tau(e_1) - \tau(e_3) &\leq 0 \\
\tau(e_1) - \tau(e_4) &\leq 0 \\
\tau(e_2) - \tau(e_3) &\leq 0 \\
\tau(e_2) - \tau(e_4) &\leq 0 \\
\tau(e_3) - \tau(e_4) &\leq 0 \\
\tau(e_4) - \tau(e_1) &\leq 4 \\
\tau(e_2) - \tau(e_3) &\leq -4
\end{align*}
\]

\[
\begin{align*}
\tau(f) - \tau(e) &\leq b \implies e \xrightarrow{b} f
\end{align*}
\]
Realizability problem for TC-MSCs

Example: realizable TC-MSC \((M, C)\)

\[
\begin{align*}
\tau(e_1) - \tau(e_2) &\leq 0 \\
\tau(e_1) - \tau(e_3) &\leq 0 \\
\tau(e_1) - \tau(e_4) &\leq 0 \\
\tau(e_2) - \tau(e_3) &\leq 0 \\
\tau(e_2) - \tau(e_4) &\leq 0 \\
\tau(e_3) - \tau(e_4) &\leq 0 \\
\tau(e_4) - \tau(e_1) &\leq 4 \\
\tau(e_2) - \tau(e_3) &\leq -4
\end{align*}
\]

\[\tau(f) - \tau(e) \leq b \Rightarrow e \xrightarrow{b} f\]

\Rightarrow \tau(f) - \tau(e) \leq b

\Rightarrow \text{no negative-weight cycle}
Realizability problem for TC-MSCs

Definition: graph of TC-MSC

Let $TC = (M, C)$ be a TC-MSC with $M = (E, \leq, \lambda)$. We define the weighted graph $G_{TC} = (V, Arcs, weight)$ where:
Realizability problem for TC-MSCs

Definition: graph of TC-MSC

Let $TC = (M, C)$ be a TC-MSC with $M = (E, \leq, \lambda)$. We define the weighted graph $G_{TC} = (V, Arcs, weight)$ where:

- $V = E \cup \{e_0\}$ (the fresh node e_0 is used to compute a realization)
Realizability problem for TC-MSCs

Definition: graph of TC-MSC

Let $TC = (M, C)$ be a TC-MSC with $M = (E, \leq, \lambda)$. We define the weighted graph $G_{TC} = (V, Arcs, weight)$ where:

- $V = E \cup \{e_0\}$ (the fresh node e_0 is used to compute a realization)
- $Arcs = \leq^{-1} \cup \{(e, f) | \exists a, b \in \mathbb{N} : ((e, f), [a, b]) \in C\} \cup \{(e_0, e) | e \in E\}$
Realizability problem for TC-MSCs

Definition: graph of TC-MSC

Let $TC = (M, C)$ be a TC-MSC with $M = (E, \leq, \lambda)$. We define the weighted graph $G_{TC} = (V, Arcs, weight)$ where:

- $V = E \uplus \{e_0\}$ (the fresh node e_0 is used to compute a realization)
- $Arcs = \langle^{-1}$
 $\cup \{(e, f) | \exists a, b \in \mathbb{N} : ((e, f), [a, b]) \in C\}$
 $\cup \{(e_0, e) | e \in E\}$
- for $(e, f) \in Arcs$, we let $weight(e, f) =$

\[
\begin{cases}
\text{[0, 4]} & \text{for } e = e_1, e_2, e_3, e_4 \\
\text{[4, } \infty) & \text{for } e = e_4
\end{cases}
\]
Realizability problem for TC-MSCs

Definition: graph of TC-MSC

Let $TC = (M, C)$ be a TC-MSC with $M = (E, \leq, \lambda)$. We define the weighted graph $G_{TC} = (V, Arcs, weight)$ where:

- $V = E \cup \{e_0\}$ (the fresh node e_0 is used to compute a realization)
- $Arcs = <^{-1} \cup \{(e, f) \mid \exists a, b \in \mathbb{N} : ((e, f), [a, b]) \in C\} \cup \{(e_0, e) \mid e \in E\}$
- for $(e, f) \in Arcs$, we let $weight(e, f) = \begin{cases} 0 & \text{if } e = e_0 \end{cases}$
Realizability problem for TC-MSCs

Definition: graph of TC-MSC

Let $TC = (M, C)$ be a TC-MSC with $M = (E, \leq, \lambda)$. We define the weighted graph $G_{TC} = (V, Arcs, weight)$ where:

- $V = E \cup \{e_0\}$ (the fresh node e_0 is used to compute a realization)
- $Aucs = \langle^{-1} \cup \{(e, f) | \exists a, b \in \mathbb{N} : ((e, f), [a, b]) \in C\} \cup \{(e_0, e) | e \in E\}$
- for $(e, f) \in Arcs$, we let $weight(e, f) =$
 \[
 \begin{cases}
 0 & \text{if } e = e_0 \\
 b & \text{if } e < f \text{ and } ((e, f), [a, b]) \in C
 \end{cases}
 \]
Realizability problem for TC-MSCs

Definition: graph of TC-MSC

Let $TC = (M, C)$ be a TC-MSC with $M = (E, \leq, \lambda)$. We define the weighted graph $G_{TC} = (V, Arcs, weight)$ where:

- $V = E \cup \{e_0\}$ (the fresh node e_0 is used to compute a realization)
- $Aecs = \langle^{-1}
 \cup \{(e, f) | \exists a, b \in \mathbb{N} : ((e, f), [a, b]) \in C\}
 \cup \{(e_0, e) | e \in E\}

- for $(e, f) \in Arcs$, we let $weight(e, f) =$
 \begin{cases}
 0 & \text{if } e = e_0 \\
 b & \text{if } e < f \text{ and } ((e, f), [a, b]) \in C \\
 \min(\{0\} \cup \{-a | ((f, e), I) \in C \text{ with } I = [a, b] \text{ or } I = [a, \infty]\}) & \text{if } f < e
 \end{cases}
Realizability problem for TC-MSCs

Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is *not* realizable.
Realizability problem for TC-MSCs

Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.
Realizability problem for TC-MSCs

Lemma:

1. If \(G_{TC} \) contains some negative-weight cycle, then \(TC \) is not realizable.
2. If \(G_{TC} \) contains no negative-weight cycle, then \(TC \) is realizable and we can compute a realization of \(TC \).

Note that negative-weight cycles can indeed be detected in cubic time.

Proof: 1.

Suppose \(\rho = (e_1, \ldots, e_n, e_1) \) with \(n \geq 2 \) is a negative-weight cycle (note that \(e_0 \) is not part of the cycle). Suppose \((M, \tau)\) is a realization of \(TC \).
Realizability problem for TC-MSCs

Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is *not* realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Note that negative-weight cycles can indeed be detected in cubic time.

Proof: 1.

Suppose $\rho = (e_1, \ldots, e_n, e_1)$ with $n \geq 2$ is a negative-weight cycle (note that e_0 is not part of the cycle). Suppose (M, τ) is a realization of TC. We have

$$\tau(e_2) - \tau(e_1) \leq \text{weight}(e_1, e_2)$$
Realizability problem for TC-MSCs

Lemma:

1. If \(G_{TC} \) contains some negative-weight cycle, then \(TC \) is not realizable.
2. If \(G_{TC} \) contains no negative-weight cycle, then \(TC \) is realizable and we can compute a realization of \(TC \).

Note that negative-weight cycles can indeed be detected in cubic time.

Proof: 1.

Suppose \(\rho = (e_1, \ldots, e_n, e_1) \) with \(n \geq 2 \) is a negative-weight cycle (note that \(e_0 \) is not part of the cycle). Suppose \((M, \tau)\) is a realization of \(TC \). We have

\[
\tau(e_2) - \tau(e_1) \leq \text{weight}(e_1, e_2)
\]
\[
\tau(e_3) - \tau(e_2) \leq \text{weight}(e_2, e_3)
\]
Realizability problem for TC-MSCs

Lemma:
1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Note that negative-weight cycles can indeed be detected in cubic time.

Proof: 1.
Suppose $\rho = (e_1, \ldots, e_n, e_1)$ with $n \geq 2$ is a negative-weight cycle (note that e_0 is not part of the cycle). Suppose (M, τ) is a realization of TC. We have

\[
\tau(e_2) - \tau(e_1) \leq \text{weight}(e_1, e_2)
\]
\[
\tau(e_3) - \tau(e_2) \leq \text{weight}(e_2, e_3)
\]
\[
\vdots
\]
\[
\tau(e_n) - \tau(e_{n-1}) \leq \text{weight}(e_{n-1}, e_n)
\]
\[
\tau(e_1) - \tau(e_n) \leq \text{weight}(e_n, e_1)
\]
Realizability problem for TC-MSCs

Lemma:
1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Note that negative-weight cycles can indeed be detected in cubic time.

Proof: 1.

Suppose $\rho = (e_1, \ldots, e_n, e_1)$ with $n \geq 2$ is a negative-weight cycle (note that e_0 is not part of the cycle). Suppose (M, τ) is a realization of TC. We have

\[\tau(e_2) - \tau(e_1) \leq \text{weight}(e_1, e_2) \]
\[\tau(e_3) - \tau(e_2) \leq \text{weight}(e_2, e_3) \]
\[\vdots \]
\[\tau(e_n) - \tau(e_{n-1}) \leq \text{weight}(e_{n-1}, e_n) \]
\[\tau(e_1) - \tau(e_n) \leq \text{weight}(e_n, e_1) \]

When we build the sum on both sides, we obtain
Realizability problem for TC-MSCs

Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Note that negative-weight cycles can indeed be detected in cubic time.

Proof: 1.

Suppose $\rho = (e_1, \ldots, e_n, e_1)$ with $n \geq 2$ is a negative-weight cycle (note that e_0 is not part of the cycle). Suppose (M, τ) is a realization of TC. We have

\[
\tau(e_2) - \tau(e_1) \leq \text{weight}(e_1, e_2)
\]
\[
\tau(e_3) - \tau(e_2) \leq \text{weight}(e_2, e_3)
\]
\[
\vdots
\]
\[
\tau(e_n) - \tau(e_{n-1}) \leq \text{weight}(e_{n-1}, e_n)
\]
\[
\tau(e_1) - \tau(e_n) \leq \text{weight}(e_n, e_1)
\]

When we build the sum on both sides, we obtain

\[
\tau(e_1) - \tau(e_1) \leq \text{weight}(\rho) < 0
\]
Realizability problem for TC-MSCs

Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is **not** realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Note that negative-weight cycles can indeed be detected in cubic time.

Proof: 1.

Suppose $\rho = (e_1, \ldots, e_n, e_1)$ with $n \geq 2$ is a negative-weight cycle (note that e_0 is not part of the cycle). Suppose (M, τ) is a realization of TC. We have

\[
\tau(e_2) - \tau(e_1) \leq \text{weight}(e_1, e_2)
\]
\[
\tau(e_3) - \tau(e_2) \leq \text{weight}(e_2, e_3)
\]
\[\vdots\]
\[
\tau(e_n) - \tau(e_{n-1}) \leq \text{weight}(e_{n-1}, e_n)
\]
\[
\tau(e_1) - \tau(e_n) \leq \text{weight}(e_n, e_1)
\]

When we build the sum on both sides, we obtain

\[
\tau(e_1) - \tau(e_1) \leq \text{weight}(\rho) < 0
\]

But this is a contradiction.
Realizability problem for TC-MSCs

Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.
Realizability problem for TC-MSCs

Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Proof: 2.

- Suppose G_{TC} contains no negative-weight cycle.
Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Proof: 2.

- Suppose G_{TC} contains no negative-weight cycle.
- For $e \in E$, let $\tau'(e)$ be the minimal weight of a path from e_0 to e (it exists!).
Realizability problem for TC-MSCs

Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Proof: 2.

- Suppose G_{TC} contains no negative-weight cycle.
- For $e \in E$, let $\tau'(e)$ be the minimal weight of a path from e_0 to e (it exists!).
- Pick any $(e, f) \in Arcs$ such that $e \neq e_0$.
Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Proof: 2.

- Suppose G_{TC} contains no negative-weight cycle.
- For $e \in E$, let $\tau'(e)$ be the minimal weight of a path from e_0 to e (it exists!).
- Pick any $(e, f) \in Arcs$ such that $e \neq e_0$.
- We have $\tau'(f) \leq \tau'(e) + \text{weight}(e, f)$,
Realizability problem for TC-MSCs

Lemma:
1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Proof: 2.

- Suppose G_{TC} contains no negative-weight cycle.
- For $e \in E$, let $\tau'(e)$ be the minimal weight of a path from e_0 to e (it exists!).
- Pick any $(e, f) \in Arcs$ such that $e \neq e_0$.
- We have $\tau'(f) \leq \tau'(e) + \text{weight}(e, f)$, which implies $\tau'(f) - \tau'(e) \leq \text{weight}(e, f)$.
Realizability problem for TC-MSCs

Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is **not** realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Proof: 2.

- Suppose G_{TC} contains no negative-weight cycle.
- For $e \in E$, let $\tau'(e)$ be the minimal weight of a path from e_0 to e (it exists!).
- Pick any $(e, f) \in Arcs$ such that $e \neq e_0$.
- We have $\tau'(f) \leq \tau'(e) + weight(e, f)$, which implies $\tau'(f) - \tau'(e) \leq weight(e, f)$.
- Thus, τ' satisfies the constraints imposed by TC.
Realizability problem for TC-MSCs

Lemma:
1. If G_{TC} contains some negative-weight cycle, then TC is \textit{not} realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Proof: 2.
- Suppose G_{TC} contains no negative-weight cycle.
- For $e \in E$, let $\tau'(e)$ be the minimal weight of a path from e_0 to e (it exists!).
- Pick any $(e, f) \in Arcs$ such that $e \neq e_0$.
- We have $\tau'(f) \leq \tau'(e) + \text{weight}(e, f)$, which implies $\tau'(f) - \tau'(e) \leq \text{weight}(e, f)$.
- Thus, τ' satisfies the constraints imposed by TC.

However, there might be negative values in the image of τ'.
Realizability problem for TC-MSCs

Lemma:
1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Proof: 2.
- Suppose G_{TC} contains no negative-weight cycle.
- For $e \in E$, let $\tau'(e)$ be the minimal weight of a path from e_0 to e (it exists!).
- Pick any $(e, f) \in Arcs$ such that $e \neq e_0$.
- We have $\tau'(f) \leq \tau'(e) + \text{weight}(e, f)$, which implies $\tau'(f) - \tau'(e) \leq \text{weight}(e, f)$.
- Thus, τ' satisfies the constraints imposed by TC.

However, there might be negative values in the image of τ'. To obtain a realization, we need a mapping $\tau : E \to \mathbb{R}_{\geq 0}$, which we obtain from τ' as follows:
Realizability problem for TC-MSCs

Lemma:
1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Proof: 2.
- Suppose G_{TC} contains no negative-weight cycle.
- For $e \in E$, let $\tau'(e)$ be the minimal weight of a path from e_0 to e (it exists!).
- Pick any $(e, f) \in Arcs$ such that $e \neq e_0$.
- We have $\tau'(f) \leq \tau'(e) + \text{weight}(e, f)$, which implies $\tau'(f) - \tau'(e) \leq \text{weight}(e, f)$.
- Thus, τ' satisfies the constraints imposed by TC.

However, there might be negative values in the image of τ'. To obtain a realization, we need a mapping $\tau : E \to \mathbb{R}_{\geq 0}$, which we obtain from τ' as follows: For $e \in E$, we set $\tau(e) = \tau'(e) - \min_{f \in E} \tau'(f)$.
Realizability problem for TC-MSCs

Lemma:

1. If G_{TC} contains some negative-weight cycle, then TC is not realizable.
2. If G_{TC} contains no negative-weight cycle, then TC is realizable and we can compute a realization of TC.

Proof: 2.

- Suppose G_{TC} contains no negative-weight cycle.
- For $e \in E$, let $\tau'(e)$ be the minimal weight of a path from e_0 to e (it exists!).
- Pick any $(e, f) \in Arcs$ such that $e \neq e_0$.
- We have $\tau'(f) \leq \tau'(e) + \text{weight}(e, f)$, which implies $\tau'(f) - \tau'(e) \leq \text{weight}(e, f)$.
- Thus, τ' satisfies the constraints imposed by TC.

However, there might be negative values in the image of τ'. To obtain a realization, we need a mapping $\tau : E \rightarrow \mathbb{R}_{\geq 0}$, which we obtain from τ' as follows: For $e \in E$, we set $\tau(e) = \tau'(e) - \min_{f \in E} \tau'(f)$. Then, (M, τ) is a realization of TC. □
Realizability problem for TC-MSCs

Example:

\[
\begin{align*}
\begin{array}{c|c}
p & q \\
\hline
0 & 0 \\
4 & 0 \\
\infty & -4 \\
\end{array}
\end{align*}
\]
Realizability problem for TC-MSCs

Example:

\[
\begin{array}{c}
\begin{array}{c}
p \\
\downarrow e_1 \\
\downarrow e_4 \\
\end{array}
\quad m
\quad e_2 \\
\quad e_3
\begin{array}{c}
q \\
\downarrow e_1 \\
\downarrow e_4 \\
\end{array}
\end{array}
\]

\([0, 4] \quad \quad [4, \infty)\)

Realization:

- \(\tau(e_1) = 0\)
- \(\tau(e_2) = 0\)
- \(\tau(e_3) = 4\)
- \(\tau(e_4) = 4\)
Floyd-Warshall Algorithm

Computes distances and detects negative-weight cycles.

\[
\text{Floyd-Warshall}(G = (\{1, \ldots, n\}, \text{Arcs}, \text{weight}))
\]

\[
\begin{align*}
\text{for } i &= 1 \text{ to } n \\
\quad d^{(0)}[i, i] &\leftarrow 0 \\
\quad \text{for } j &= 1 \text{ to } n \\
\quad &\quad \text{if } i \neq j \text{ and } (i, j) \in \text{Arcs} \text{ then } d^{(0)}[i, j] \leftarrow \text{weight}(i, j) \\
\quad &\quad \text{if } i \neq j \text{ and } (i, j) \notin \text{Arcs} \text{ then } d^{(0)}[i, j] \leftarrow \infty
\end{align*}
\]

\[
\begin{align*}
\text{for } k &= 1 \text{ to } n \\
\quad \text{for } i &= 1 \text{ to } n \\
\quad &\quad \text{for } j &= 1 \text{ to } n \\
\quad &\quad &\quad d^{(k)}[i, j] \leftarrow \min(d^{(k-1)}[i, j], d^{(k-1)}[i, k] + d^{(k-1)}[k, j])
\end{align*}
\]

\[
\text{for } i &= 1 \text{ to } n \\
\quad \text{if } d^{(n)}[i, i] < 0 \text{ then } \text{“there is a negative-weight cycle”}
\]
Floyd-Warshall Algorithm

Computes distances and detects negative-weight cycles.

Floyd-Warshall($G = (\{1, \ldots, n\}, \text{Arcs}, \text{weight})$)

```
for i = 1 to n
    d^{(0)}[i, i] \leftarrow 0
for j = 1 to n
    if i \neq j and (i, j) \in \text{Arcs} then d^{(0)}[i, j] \leftarrow \text{weight}(i, j)
    if i \neq j and (i, j) \notin \text{Arcs} then d^{(0)}[i, j] \leftarrow \infty

for k = 1 to n
    for i = 1 to n
        for j = 1 to n
            d^{(k)}[i, j] \leftarrow \min(d^{(k-1)}[i, j], d^{(k-1)}[i, k] + d^{(k-1)}[k, j])

for i = 1 to n
    if d^{(n)}[i, i] < 0 then "there is a negative-weight cycle"
```

If there is no negative-weight cycle, then $d^{(n)}[i, j]$ is the weight of the shortest path from i to j. Running time $\mathcal{O}(n^3)$.

Floyd-Warshall Algorithm

Computes distances and detects negative-weight cycles.

Floyd-Warshall\((G = (\{1, \ldots, n\}, Arcs, weight))\)

for \(i = 1\) to \(n\)
 \(d^{(0)}[i, i] \leftarrow 0\)
for \(j = 1\) to \(n\)
 if \(i \neq j\) and \((i, j) \in Arcs\) then \(d^{(0)}[i, j] \leftarrow weight(i, j)\)
 if \(i \neq j\) and \((i, j) \notin Arcs\) then \(d^{(0)}[i, j] \leftarrow \infty\)

for \(k = 1\) to \(n\)
 for \(i = 1\) to \(n\)
 for \(j = 1\) to \(n\)
 \(d^{(k)}[i, j] \leftarrow \min(d^{(k-1)}[i, j], d^{(k-1)}[i, k] + d^{(k-1)}[k, j])\)

for \(i = 1\) to \(n\)
 if \(d^{(n)}[i, i] < 0\) then “there is a negative-weight cycle”

If there is no negative-weight cycle, then \(d^{(n)}[i, j]\) is the weight of the shortest path from \(i\) to \(j\). Running time \(O(n^3)\).

More efficient alternative (single source): Bellman-Ford algorithm; \(O(n \cdot |Arcs|)\).
Realizability problem for TC-MSCs

Exercise:

Let $Proc = \{p, q, r\}$ and $Msg = \{m\}$. Let the TC-MSC TC (over $Proc$ and Msg) be given as follows (the message type is omitted):

Apply the realizability algorithm to TC. In particular, determine the weighted graph G_{TC}. If TC is realizable, then determine the realization that the algorithm outputs.
Realizability problem for TC-MSCs

Exercise:
Reduce the realizability problem for TC-MSCs (in its full generality, i.e., considering all intervals from Int) to the emptiness problem for timed automata. More precisely: give an effective transformation of a TC-MSC TC into a timed automaton A such that TC is realizable iff $L(A) \neq \emptyset$.

Notice: In line with this lecture, a timed automaton is an icTA A over one single process. Its language $L(A)$ is defined as $L(A, \text{id})$.
Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics

Summary

2 Message Sequence Charts with Timing Constraints (TC-MSCs)

Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs

Message Sequence Graphs with Timing Constraints

Timed Channel Systems

Time(d) Petri Nets

Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Message Sequence Graphs with timing constraints

Idea:
Define more complex behaviors by means of automata constructs.
Message Sequence Graphs with timing constraints

Idea:
Define more complex behaviors by means of automata constructs.

Example:

\[
\begin{align*}
\Rightarrow & \quad r \quad m_1 \quad s \\
& \quad [0, 3] \\
& (([0, 2],[1, 1])), ((2, 3],[1, 1]))
\end{align*}
\]
Message Sequence Graphs with timing constraints

Idea:
Define more complex behaviors by means of automata constructs.

Example:
Definition: (asynchronous) concatenation of MSCs

Let $M^1 = (E^1, \leq^1, \lambda^1)$ and $M^2 = (E^2, \leq^2, \lambda^2)$ be MSCs (assume $E^1 \cap E^2 = \emptyset$).
Definition: (asynchronous) concatenation of MSCs

Let $M^1 = (E^1, \leq^1, \lambda^1)$ and $M^2 = (E^2, \leq^2, \lambda^2)$ be MSCs (assume $E^1 \cap E^2 = \emptyset$). We set $M^1 \circ M^2 := (E, \leq, \lambda)$ where:
Definition: (asynchronous) concatenation of MSCs

Let $M^1 = (E^1, \leq^1, \lambda^1)$ and $M^2 = (E^2, \leq^2, \lambda^2)$ be MSCs (assume $E^1 \cap E^2 = \emptyset$). We set $M^1 \circ M^2 := (E, \leq, \lambda)$ where:

$E = E^1 \cup E^2$
Definition: (asynchronous) concatenation of MSCs

Let $M^1 = (E^1, \leq^1, \lambda^1)$ and $M^2 = (E^2, \leq^2, \lambda^2)$ be MSCs (assume $E^1 \cap E^2 = \emptyset$). We set $M^1 \circ M^2 := (E, \leq, \lambda)$ where:

- $E = E^1 \cup E^2$
- $\lambda(e) = \lambda^i(e)$ if $e \in E^i$
Concatenation of MSCs and TC-MSCs

Definition: (asynchronous) concatenation of MSCs

Let \(M^1 = (E^1, \leq^1, \lambda^1) \) and \(M^2 = (E^2, \leq^2, \lambda^2) \) be MSCs (assume \(E^1 \cap E^2 = \emptyset \)). We set \(M^1 \circ M^2 := (E, \leq, \lambda) \) where:

- \(E = E^1 \cup E^2 \)
- \(\lambda(e) = \lambda^i(e) \) if \(e \in E^i \)
- \(\leq = (\leq^1 \cup \leq^2 \cup \bigcup_{p \in Proc}(E^1_p \times E^2_p))^* \)
Definition: (asynchronous) concatenation of MSCs

Let $M^1 = (E^1, \leq^1, \lambda^1)$ and $M^2 = (E^2, \leq^2, \lambda^2)$ be MSCs (assume $E^1 \cap E^2 = \emptyset$). We set $M^1 \circ M^2 := (E, \leq, \lambda)$ where:

- $E = E^1 \cup E^2$
- $\lambda(e) = \lambda^i(e)$ if $e \in E^i$
- $\leq = (\leq^1 \cup \leq^2 \cup \bigcup_{p \in Proc} (E^1_p \times E^2_p))^*$

Note that $M^1 \circ M^2$ is again an MSC, and that concatenation is associative.
Definition: (asynchronous) concatenation of MSCs

Let $M^1 = (E^1, \leq^1, \lambda^1)$ and $M^2 = (E^2, \leq^2, \lambda^2)$ be MSCs (assume $E^1 \cap E^2 = \emptyset$). We set $M^1 \circ M^2 := (E, \leq, \lambda)$ where:

- $E = E^1 \cup E^2$
- $\lambda(e) = \lambda^i(e)$ if $e \in E^i$
- $\leq = (\leq^1 \cup \leq^2 \cup \bigcup_{p \in Proc} (E^1_p \times E^2_p))^*$

Note that $M^1 \circ M^2$ is again an MSC, and that concatenation is associative.

Concatenation of TC-MSCs is parametrized by a partial mapping $\gamma : Proc \rightarrow Int$:
Concatenation of MSCs and TC-MSCs

Definition: (asynchronous) concatenation of MSCs

Let $M^1 = (E^1, \leq^1, \lambda^1)$ and $M^2 = (E^2, \leq^2, \lambda^2)$ be MSCs (assume $E^1 \cap E^2 = \emptyset$). We set $M^1 \circ M^2 := (E, \leq, \lambda)$ where:

1. $E = E^1 \cup E^2$
2. $\lambda(e) = \lambda^i(e)$ if $e \in E^i$
3. $\leq = (\leq^1 \cup \leq^2 \cup \bigcup_{p \in Proc}(E^1_p \times E^2_p))^*$

Note that $M^1 \circ M^2$ is again an MSC, and that concatenation is associative.

Concatenation of TC-MSCs is parametrized by a partial mapping $\gamma : Proc \rightarrow Int$

Definition: concatenation of TC-MSCs

Let $TC^1 = (M^1, C^1)$ and $TC^2 = (M^2, C^2)$ be TC-MSCs where, for $i \in \{1, 2\}$, $M^i = (E^i, \leq^i, \lambda^i)$ (assume $E^1 \cap E^2 = \emptyset$).
Concatenation of MSCs and TC-MSCs

Definition: (asynchronous) concatenation of MSCs

Let $M^1 = (E^1, \leq^1, \lambda^1)$ and $M^2 = (E^2, \leq^2, \lambda^2)$ be MSCs (assume $E^1 \cap E^2 = \emptyset$). We set $M^1 \circ M^2 := (E, \leq, \lambda)$ where:

- $E = E^1 \cup E^2$
- $\lambda(e) = \lambda^i(e)$ if $e \in E^i$
- $\leq = (\leq^1 \cup \leq^2 \cup \bigcup_{p \in Proc} (E^1_p \times E^2_p))^*$

Note that $M^1 \circ M^2$ is again an MSC, and that concatenation is associative.

Concatenation of TC-MSCs is parametrized by a partial mapping $\gamma : Proc \rightarrow Int$:

Definition: concatenation of TC-MSCs

Let $TC^1 = (M^1, C^1)$ and $TC^2 = (M^2, C^2)$ be TC-MSCs where, for $i \in \{1, 2\}$, $M^i = (E^i, \leq^i, \lambda^i)$ (assume $E^1 \cap E^2 = \emptyset$). Let $\gamma : Proc \rightarrow Int$ be a partial mapping.
Concatenation of MSCs and TC-MSCs

Definition: (asynchronous) concatenation of MSCs

Let $M^1 = (E^1, \leq^1, \lambda^1)$ and $M^2 = (E^2, \leq^2, \lambda^2)$ be MSCs (assume $E^1 \cap E^2 = \emptyset$). We set $M^1 \circ M^2 := (E, \leq, \lambda)$ where:

- $E = E^1 \cup E^2$
- $\lambda(e) = \lambda^i(e)$ if $e \in E^i$
- $\leq = (\leq^1 \cup \leq^2 \cup \bigcup_{p \in \text{Proc}} (E^1_p \times E^2_p))^*$

Note that $M^1 \circ M^2$ is again an MSC, and that concatenation is associative.

Concatenation of TC-MSCs is parametrized by a partial mapping $\gamma : \text{Proc} \rightarrow \text{Int}$:

Definition: concatenation of TC-MSCs

Let $TC^1 = (M^1, C^1)$ and $TC^2 = (M^2, C^2)$ be TC-MSCs where, for $i \in \{1, 2\}$, $M^i = (E^i, \leq^i, \lambda^i)$ (assume $E^1 \cap E^2 = \emptyset$). Let $\gamma : \text{Proc} \rightarrow \text{Int}$ be a partial mapping. Then, $TC^1 \circ_\gamma TC^2$ is defined if, for all $p \in \text{dom}(\gamma)$, both $E^1_p \neq \emptyset$ and $E^2_p \neq \emptyset$.
Concatenation of MSCs and TC-MSCs

Definition: (asynchronous) concatenation of MSCs

Let $M^1 = (E^1, \leq^1, \lambda^1)$ and $M^2 = (E^2, \leq^2, \lambda^2)$ be MSCs (assume $E^1 \cap E^2 = \emptyset$). We set $M^1 \circ M^2 := (E, \leq, \lambda)$ where:

- $E = E^1 \cup E^2$
- $\lambda(e) = \lambda^i(e)$ if $e \in E^i$
- $\leq = (\leq^1 \cup \leq^2 \cup \bigcup_{p \in \text{Proc}} (E^1_p \times E^2_p))^*$

Note that $M^1 \circ M^2$ is again an MSC, and that concatenation is associative.

Definition: concatenation of TC-MSCs

Let $TC^1 = (M^1, C^1)$ and $TC^2 = (M^2, C^2)$ be TC-MSCs where, for $i \in \{1, 2\}$, $M^i = (E^i, \leq^i, \lambda^i)$ (assume $E^1 \cap E^2 = \emptyset$). Let $\gamma : \text{Proc} \rightarrow \text{Int}$ be a partial mapping. Then, $TC^1 \circ_\gamma TC^2$ is defined if, for all $p \in \text{dom}(\gamma)$, both $E^1_p \neq \emptyset$ and $E^2_p \neq \emptyset$. If defined, we set

$$TC^1 \circ_\gamma TC^2 := (M^1 \circ M^2, C)$$

where $C = C^1 \cup C^2 \cup \{((\max(E^1_p), \min(E^2_p)), \gamma(p)) \mid p \in \text{dom}(\gamma)\}$.
Message Sequence Graphs with timing constraints

Definition: TC-MSG

A **TC-MSG** is a structure $G = (S, \Delta, S_{in}, S_F, \Phi, \gamma)$ where
Message Sequence Graphs with timing constraints

Definition: TC-MSG

A *TC-MSG* is a structure $G = (S, \Delta, S_{in}, S_F, \Phi, \gamma)$ where

- S is a non-empty finite set of states

![Diagram of TC-MSG](image)
Definition: TC-MSG

A TC-MSG is a structure $G = (S, \Delta, S_{in}, S_F, \Phi, \gamma)$ where

- S is a non-empty finite set of states
- $S_{in} \subseteq S$ and $S_F \subseteq S$ are the sets of initial and final states, resp.
Message Sequence Graphs with timing constraints

Definition: TC-MSG

A TC-MSG is a structure $G = (S, \Delta, S_{in}, S_F, \Phi, \gamma)$ where

- S is a non-empty finite set of states
- $S_{in} \subseteq S$ and $S_F \subseteq S$ are the sets of initial and final states, resp.
- $\Delta \subseteq S \times S$ is the transition relation

\[\Rightarrow \begin{array}{c}
 r & \quad m_1 \quad s \\
 [0, 3] \\
\end{array} \]

\[
([0, 2],[1, 1]) \quad ((2,3],[1,1])
\]

\[
\Rightarrow \begin{array}{c}
 r & \quad m_2 \quad s \\
 m_3 \\
\end{array} \]

\[
\Rightarrow \begin{array}{c}
 r & \quad m_2 \quad s \\
\end{array} \]
Message Sequence Graphs with timing constraints

Definition: TC-MSG

A TC-MSG is a structure $G = (S, \Delta, S_{in}, S_{F}, \Phi, \gamma)$ where

- S is a non-empty finite set of states
- $S_{in} \subseteq S$ and $S_{F} \subseteq S$ are the sets of initial and final states, resp.
- $\Delta \subseteq S \times S$ is the transition relation
- Φ is a mapping from S into the set of TC-MSCs
Message Sequence Graphs with timing constraints

Definition: TC-MSG

A **TC-MSG** is a structure $G = (S, \Delta, S_{\text{in}}, S_{\text{F}}, \Phi, \gamma)$ where

- S is a non-empty finite set of *states*
- $S_{\text{in}} \subseteq S$ and $S_{\text{F}} \subseteq S$ are the sets of *initial* and *final states*, resp.
- $\Delta \subseteq S \times S$ is the *transition relation*
- Φ is a mapping from S into the set of TC-MSCs
- $\gamma : \Delta \rightarrow \{\gamma \mid \gamma : \text{Proc} \rightarrow \text{Int}\}$ specifies *edge constraints* such that, for all $(s, s') \in \Delta$, the concatenation $\Phi(s) \circ \gamma(s, s') \Phi(s')$ is defined

![Diagram](image-url)
Message Sequence Graphs with timing constraints

Definition: TC-MSG

A TC-MSG is a structure $G = (S, \Delta, S_{in}, S_F, \Phi, \overline{\gamma})$ where

- S is a non-empty finite set of states
- $S_{in} \subseteq S$ and $S_F \subseteq S$ are the sets of initial and final states, resp.
- $\Delta \subseteq S \times S$ is the transition relation
- Φ is a mapping from S into the set of TC-MSCs
- $\overline{\gamma} : \Delta \rightarrow \{\gamma \mid \gamma : Proc \rightarrow Int\}$ specifies edge constraints such that, for all $(s, s') \in \Delta$, the concatenation $\Phi(s) \circ \overline{\gamma}(s, s') \Phi(s')$ is defined

![Diagram of TC-MSG with examples of message sequences and timing constraints.](image-url)
For a path $\rho = (s_0, s_1, \ldots, s_n)$ through G (i.e., $n \geq 0$ and $(s_i, s_{i+1}) \in \Delta$ for all $i \in \{0, \ldots, n-1\}$), let

$$\Phi(\rho) := \Phi(s_0) \circ_{\gamma}(s_0, s_1) \Phi(s_1) \circ_{\gamma}(s_1, s_2) \cdots \circ_{\gamma}(s_{n-1}, s_n) \Phi(s_n)$$

which is indeed defined.
TC-MSGs

Definition: language of TC-MSG

For a path $\rho = (s_0, s_1, \ldots, s_n)$ through G (i.e., $n \geq 0$ and $(s_i, s_{i+1}) \in \Delta$ for all $i \in \{0, \ldots, n-1\}$), let

$$\Phi(\rho) := \Phi(s_0) \circ \gamma(s_0, s_1) \Phi(s_1) \circ \gamma(s_1, s_2) \cdots \circ \gamma(s_{n-1}, s_n) \Phi(s_n)$$

which is indeed defined. Then, the *language* of G is the set $L(G) := \{ \Phi(\rho) \mid \rho = (s_0, s_1, \ldots, s_n) \text{ is a path through } G \text{ such that } s_0 \in S_{in} \text{ and } s_n \in S_F \}$.
TC-MSGs

Definition: language of TC-MSG

For a path $\rho = (s_0, s_1, \ldots, s_n)$ through G (i.e., $n \geq 0$ and $(s_i, s_{i+1}) \in \Delta$ for all $i \in \{0, \ldots, n-1\}$), let

$$\Phi(\rho) := \Phi(s_0) \circ_\gamma(s_0, s_1) \Phi(s_1) \circ_\gamma(s_1, s_2) \cdots \circ_\gamma(s_{n-1}, s_n) \Phi(s_n)$$

which is indeed defined. Then, the language of G is the set $L(G) := \{\Phi(\rho) \mid \rho = (s_0, s_1, \ldots, s_n)$ is a path through G such that $s_0 \in S_{in}$ and $s_n \in S_F\}$.

![Diagram of TC-MSGs](image_url)
Realizability of TC-MSGs

Definition: realizability of TC-MSGs

A TC-MSG G is called *realizable* if $L(G)$ contains some realizable TC-MSC.
Realizability of TC-MSGs

Definition: realizability of TC-MSGs
A TC-MSG \(G \) is called realizable if \(L(G) \) contains some realizable TC-MSC.

E.g., the previous example TC-MSG is realizable. But the problem is difficult (in the following, let \(n \) stand for a constraint \([n, n]\)):
Realizability of TC-MSGs

Definition: realizability of TC-MSGs

A TC-MSG G is called realizable if $L(G)$ contains some realizable TC-MSC.

E.g., the previous example TC-MSG is realizable. But the problem is difficult (in the following, let n stand for a constraint $[n, n]$):

Example:

\[
\begin{align*}
& t_q - t_p : +a \\
& t_q - t_p : -b
\end{align*}
\]
Realizability of TC-MSGs

Definition: realizability of TC-MSGs

A TC-MSG G is called *realizable* if $L(G)$ contains some realizable TC-MSC.

E.g., the previous example TC-MSG is realizable. But the problem is difficult (in the following, let n stand for a constraint $[n, n]$):

Example:

To reach the last node from the first one, we need to iterate:

- k-times the first loop
Realizability of TC-MSGs

Definition: realizability of TC-MSGs

A TC-MSG G is called *realizable* if $L(G)$ contains some realizable TC-MSC.

E.g., the previous example TC-MSG is realizable. But the problem is difficult (in the following, let n stand for a constraint $[n, n]$):

Example:

To reach the last node from the first one, we need to iterate:

- k-times the first loop
- ℓ-times the second loop
Realizability of TC-MSGs

Definition: realizability of TC-MSGs

A TC-MSG G is called *realizable* if $L(G)$ contains some realizable TC-MSC.

E.g., the previous example TC-MSG is realizable. But the problem is difficult (in the following, let n stand for a constraint $[n, n]$):

Example:

To reach the last node from the first one, we need to iterate:

- k-times the first loop
- ℓ-times the second loop

such that $ka - \ell b = 1$.

![Diagram of realizable TC-MSG](image)
Realizability of TC-MSGs

Theorem:
Realizability is decidable for TC-MSGs \((S, \Delta, S_{in}, S_F, \Phi, \overline{\gamma})\) such that, for all \((s, s') \in \Delta\), we have \(\text{dom}(\overline{\gamma}(s, s')) = \emptyset\).
Realizability of TC-MSGs

Theorem:
Realizability is decidable for TC-MSGs \((S, \Delta, S_{in}, S_F, \Phi, \gamma)\) such that, for all \((s, s') \in \Delta\), we have \(\text{dom}(\gamma(s, s')) = \emptyset\).

Proof:
It is sufficient to check some TC-MSCs that are on a path from an initial to a final state.
Realizability of TC-MSGs

Theorem:
Realizability is decidable for TC-MSGs $(S, \Delta, S_{in}, S_F, \Phi, \overline{\gamma})$ such that, for all $(s, s') \in \Delta$, we have $\text{dom}(\overline{\gamma}(s, s')) = \emptyset$.

Proof:
It is sufficient to check some TC-MSCs that are on a path from an initial to a final state.

Unfortunately, realizability is, in general, undecidable:
Realizability of TC-MSGs

Theorem:
Realizability is decidable for TC-MSGs \((S, \Delta, S_{in}, S_F, \Phi, \gamma)\) such that, for all \((s, s') \in \Delta\), we have \(\text{dom}(\gamma(s, s')) = \emptyset\).

Proof:
It is sufficient to check some TC-MSCs that are on a path from an initial to a final state.

Unfortunately, realizability is, in general, undecidable:

Theorem: [Gastin et al. 2008]
Realizability of TC-MSGs is undecidable (even when we restrict to TC-MSGs with timing constraints on processes).
Proof of undecidability

The proof is by reduction from emptiness of 2-counter machines (2-CM), which are equipped with two counters, c_1 and c_2, whose value is initially 0.
Proof of undecidability

The proof is by reduction from emptiness of 2-counter machines (2-CM), which are equipped with two counters, \(c_1 \) and \(c_2 \), whose value is initially 0.

A 2-CM is a sequence of labeled instructions:

\[
\begin{align*}
1 &: instr_1 \\
2 &: instr_2 \\
\vdots \\
n &: instr_n
\end{align*}
\]
Proof of undecidability

The proof is by reduction from emptiness of 2-counter machines (2-CM), which are equipped with two counters, c_1 and c_2, whose value is initially 0.

A 2-CM is a sequence of labeled instructions:

$$
\begin{align*}
1 & : instr_1 \\
2 & : instr_2 \\
& \vdots \\
n & : instr_n
\end{align*}
$$

Each instruction is one of the following (where $c \in \{c_1, c_2\}$):

- $\ell : \text{accept}$
- $\ell : c++$
- $\ell : \text{if } c == 0 \text{ goto } \ell' \text{ else } c--$
Proof of undecidability

The proof is by reduction from emptiness of 2-counter machines (2-CM), which are equipped with two counters, c_1 and c_2, whose value is initially 0.

A 2-CM is a sequence of labeled instructions:

\[
\begin{align*}
1 : \text{instr}_1 \\
2 : \text{instr}_2 \\
\vdots \\
n : \text{instr}_n
\end{align*}
\]

Each instruction is one of the following (where $c \in \{c_1, c_2\}$):

- $\ell : \text{accept}$
- $\ell : c++$
- $\ell : \text{if } c == 0 \text{ goto } \ell' \text{ else } c--$

The semantics of an instruction and of a program are as expected:

- $c++$ increments counter c by 1
- $c--$ decrements counter c by 1
Proof of undecidability

The proof is by reduction from emptiness of 2-counter machines (2-CM), which are equipped with two counters, c_1 and c_2, whose value is initially 0.

A 2-CM is a sequence of labeled instructions:

\[
\begin{align*}
1 & : instr_1 \\
2 & : instr_2 \\
& \vdots \\
n & : instr_n
\end{align*}
\]

Each instruction is one of the following (where $c \in \{c_1, c_2\}$):

- $\ell : \text{accept}$
- $\ell : c++$
- $\ell : \text{if } c == 0 \text{ goto } \ell' \text{ else } c --$

The semantics of an instruction and of a program are as expected:

- $c++$ increments counter c by 1
- $c --$ decrements counter c by 1

We construct a TC-MSG G that contains a realizable TC-MSC iff the 2-CM accepts, i.e., it executes an instruction of the form $\ell : \text{accept}$.
Simulation of 2-CM

Idea:

We employ two processes, \(p \) and \(q \), to simulate one counter \(c \). The idea is that the difference \(t_q - t_p \) between the execution times of the current events of \(p \) and \(q \) tracks the counter value. In particular, we maintain \(t_p \leq t_q \) as an invariant.
Simulation of 2-CM

Idea:

We employ two processes, p and q, to simulate one counter c. The idea is that the difference $t_q - t_p$ between the execution times of the current events of p and q tracks the counter value. In particular, we maintain $t_p \leq t_q$ as an invariant.
Proof:

- The edge constraints 1, 1 make sure that $t_q - t_p$ is preserved.
Simulation of 2-CM

Proof:

- The edge constraints 1, 1 make sure that \(t_q - t_p \) is preserved.
- The initial state 0 executes two copies of \(\text{Init} \) to make sure that we initially have \(t_q - t_p = 0 \) for both counters.
Proof:

- The edge constraints 1, 1 make sure that $t_q - t_p$ is preserved.
- The initial state 0 executes two copies of Init to make sure that we initially have $t_q - t_p = 0$ for both counters.
- For all $\ell : c++$, create a state ℓ in G. It executes both $c++$ and, for the other counter, Freeze.
Simulation of 2-CM

Proof:

- The edge constraints $1, 1$ make sure that $t_q - t_p$ is preserved.
- The initial state 0 executes two copies of $Init$ to make sure that we initially have $t_q - t_p = 0$ for both counters.
- For all $c++$, create a state ℓ in G. It executes both $c++$ and, for the other counter, Freeze.
- For all $\ell : \text{if } c == 0 \text{ goto } \ell' \text{ else } c--$, create two states:
Simulation of 2-CM

Proof:

- The edge constraints 1, 1 make sure that $t_q - t_p$ is preserved.
- The initial state 0 executes two copies of $Init$ to make sure that we initially have $t_q - t_p = 0$ for both counters.
- For all $\ell : c++$, create a state ℓ in G. It executes both $c++$ and, for the other counter, $Freeze$.
- For all $\ell : if \ c == 0 \ goto \ \ell' \ else \ c--$, create two states:
 - $\ell = \ell$ executes the test $c == 0$ for counter c and $Freeze$ for the other counter.
Simulation of 2-CM

Proof:

- The edge constraints 1, 1 make sure that $t_q - t_p$ is preserved.
- The initial state 0 executes two copies of Init to make sure that we initially have $t_q - t_p = 0$ for both counters.
- For all $\ell : c++$, create a state ℓ in G. It executes both $c++$ and, for the other counter, Freeze.
- For all $\ell : \text{if } c == 0 \text{ goto } \ell'$ else $c--$, create two states:
 - ℓ_- executes the test $c == 0$ for counter c and Freeze for the other counter
 - ℓ_- executes the decrement $c--$ for counter c and Freeze for the other counter
Simulation of 2-CM

Proof:

- The edge constraints 1, 1 make sure that \(t_q - t_p \) is preserved.
- The initial state 0 executes two copies of \(\text{Init} \) to make sure that we initially have \(t_q - t_p = 0 \) for both counters.
- For all \(\ell : c++ \), create a state \(\ell \) in \(G \). It executes both \(c++ \) and, for the other counter, \(\text{Freeze} \).
- For all \(\ell : \text{if } c == 0 \text{ goto } \ell' \text{ else } c-- \), create two states:
 - \(\ell_- \) executes the test \(c == 0 \) for counter \(c \) and \(\text{Freeze} \) for the other counter
 - \(\ell_- \) executes the decrement \(c-- \) for counter \(c \) and \(\text{Freeze} \) for the other counter

When the next instruction to be executed is of that form, \(G \) branches non-deterministically (and with edge constraints 1, 1) into \(\ell_- \) or \(\ell_- \).
Simulation of 2-CM

Proof:

- The edge constraints 1, 1 make sure that $t_q - t_p$ is preserved.
- The initial state 0 executes two copies of $Init$ to make sure that we initially have $t_q - t_p = 0$ for both counters.
- For all $\ell : c++$, create a state ℓ in G. It executes both $c++$ and, for the other counter, $Freeze$.
- For all $\ell : if \ c == 0 \ goto \ \ell' \ else \ c--$, create two states:
 - $\ell=___$ executes the test $c == 0$ for counter c and $Freeze$ for the other counter
 - $\ell-=___$ executes the decrement $c --$ for counter c and $Freeze$ for the other counter

When the next instruction to be executed is of that form, G branches non-deterministically (and with edge constraints 1, 1) into $\ell=___$ or $\ell-=___$.

- For $\ell : accept$, create an accepting state ℓ, executing two copies of $Freeze$.

Simulation of 2-CM

Proof:

- The edge constraints 1, 1 make sure that $t_q - t_p$ is preserved.
- The initial state 0 executes two copies of Init to make sure that we initially have $t_q - t_p = 0$ for both counters.
- For all $\ell : c++$, create a state ℓ in G. It executes both $c++$ and, for the other counter, Freeze.
- For all $\ell : \text{if } c == 0 \text{ goto } \ell'$ else $c--$, create two states:
 - ℓ_\equiv executes the test $c == 0$ for counter c and Freeze for the other counter
 - ℓ_\neq executes the decrement $c--$ for counter c and Freeze for the other counter
 When the next instruction to be executed is of that form, G branches non-deterministically (and with edge constraints 1, 1) into ℓ_\equiv or ℓ_\neq.
- For $\ell : \text{accept}$, create an accepting state ℓ, executing two copies of Freeze.

With this, the 2-CM accepts iff $L(G)$ contains some realizable TC-MSC.
Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics

Summary

2 Message Sequence Charts with Timing Constraints (TC-MSCs)
Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints

Timed Channel Systems

Time(d) Petri Nets
Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Timed Channel System

User

\[s_1 \]

\[!(\text{pswd}) \]

\[x \leftarrow 0 \]

\[s_2 \]

\[?(\text{wrong}) \]

\[x \in [5, 7] \]

\[s_3 \]

\[?(\text{correct}) \]

Server

\[t_1 \]

\[!(\text{correct}) \]

\[t_2 \]

\[?(\text{pswd} \in [0, 4]) \]

\[!(\text{wrong}) \]
Timed Channel System

User

\[s_1 \]

! (pswd)
\[x \leftarrow 0 \]

? (wrong)
\[x \in [5, 7] \]

\[s_2 \]

? (correct)

Server

\[t_1 \]

! (correct)

? (pswd \(\in [0, 4] \))

\[t_2 \]

! (wrong)

? (pswd \(\in [0, 4] \))

\[s_3 \]
Timed Channel System

User

\[s_1 \]

!(pwd)

\[x \leftarrow 0 \]

? (wrong)

\[x \in [5, 7] \]

\[s_2 \]

? (correct)

Server

\[t_1 \]

!(correct)

? (pwd ∈ [0, 4])

\[t_2 \]

!(wrong)

? (correct)
Timed Channel System

User

\[s_1 \]

! (pswd)

\[x \leftarrow 0 \]

? (wrong)

\[x \in [5, 7] \]

\[s_2 \]

\[t_1 \]

! (correct)

\[\text{User} \rightarrow \text{Server} \]

? (pswd \in [0, 4])

! (wrong)

\[s_3 \]

Server

User

? (correct)

\[t_2 \]

1

\[\text{User} \rightarrow \text{Server} \]

pswd

3

\[\text{Server} \rightarrow \text{User} \]
Timed Channel System

User

S_1

$(\text{!} \text{pswd})$

$x \leftarrow 0$

S_2

$(\text{?} \text{wrong})$

$x \in [5, 7]$

S_3

$(\text{?} \text{correct})$

Server

t_1

$(\text{!} \text{correct})$

t_2

$(\text{?} \text{pswd} \in [0, 4])$

$(\text{!} \text{wrong})$

User to Server

1

pswd

Server

3

User Server
Timed Channel System

User

s_1

!(pswd)

$x \leftarrow 0$

?(wrong)

$x \in [5, 7]$

s_2

?(correct)

Server

t_1

!(correct)

?(pswd $\in [0, 4]$)

t_2

!(wrong)

?(correct)

User

Server

1

pswd

3

7

wrong

5
Timed Channel System

User

- \(s_1 \)
- \(!(\text{pswd}) \)
- \(x \leftarrow 0 \)
- \(?(\text{wrong}) \)
- \(x \in [5, 7] \)
- \(?(\text{correct}) \)
- \((\text{pswd} \in [0, 4]) \)
- \(!(\text{wrong}) \)

Server

- \(t_1 \)
- \(!(\text{correct}) \)
- \(?(\text{pswd} \in [0, 4]) \)
- \(!(\text{wrong}) \)
Timed Channel System

User

\[s_1 \]

\[s_2 \]

\[s_3 \]

\(?(\text{wrong}) \quad x \in [5, 7] \)

\(!(\text{pswd}) \quad x \leftarrow 0 \)

\(?(\text{correct}) \)

Server

\[t_1 \]

\[t_2 \]

\(?(\text{pswd} \in [0, 4]) \)

\(!(\text{correct}) \)

\(!(\text{wrong}) \)

\(?(\text{correct}) \)

1 to 3:

User to Server:

1. pswd
2. wrong
3. 5

8 to 9:

User to Server:

8. pswd
9. 9
Timed Channel System

User

- s_1
 - (pswd)
 - $x \leftarrow 0$

- s_2
 - (wrong)
 - $x \in [5, 7]$

- s_3
 - (correct)

Server

- t_1
 - (correct)

- t_2
 - (wrong)

- t_1
 - $(\text{pswd} \in [0, 4])$

User to Server:

- User sends pswd to Server.
- Server checks x.
- Server sends pswd to User.
- User checks x.

User Server User:

- User sends pswd to Server.
- Server checks x.
- Server sends pswd to User.
- User checks x.
Timed Channel System

User

- s_1: !(pswd)
 - $x \leftarrow 0$
 - ?(wrong)
 - $x \in [5, 7]$
- s_2: ?(correct)
 - !(correct)
 - !(wrong)
- s_3: ?(correct)

Server

- t_1: !(correct)
 - !(pswd)$ \in [0, 4]$
- t_2: !$(correct)$

Diagram:

User

- 1: pswd
- 7: wrong
- 8: pswd
- 10: correct

Server

- 3
- 5
- 9
- 10
An timed channel system (TCS) is a tuple $\mathcal{T} = (S, Msg, C, X, \Delta, s_0)$ where

- S is a finite set of states
- Msg is a finite set of messages
- C is a finite set of channels
- X is a finite set of clocks
- Δ is a finite set of transitions
- $s_0 \in S$ is the initial state
Timed Channel System

Definition: TCS

An timed channel system (TCS) is a tuple $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ where

- S is a finite set of states
- Msg is a finite set of messages
- C is a finite set of channels
- X is a finite set of clocks
- Δ is a finite set of transitions
- $s_0 \in S$ is the initial state

A transition is a triple (s, op, s') where $s, s' \in S$ and op is one of the following:

- nop (no operation)
Timed Channel System

Definition: TCS

An timed channel system (TCS) is a tuple \(T = (S, \text{Msg}, C, X, \Delta, s_0) \) where

- \(S \) is a finite set of states
- \(\text{Msg} \) is a finite set of messages
- \(C \) is a finite set of channels
- \(X \) is a finite set of clocks
- \(\Delta \) is a finite set of transitions
- \(s_0 \in S \) is the initial state

A transition is a triple \((s, op, s')\) where \(s, s' \in S \) and \(op \) is one of the following:

- \(\text{nop} \) (no operation)
- \(c!(m) \) (appends \(m \in \text{Msg} \) to \(c \in C \) according to FIFO)
Timed Channel System

Definition: TCS

An timed channel system (TCS) is a tuple $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ where

- S is a finite set of states
- Msg is a finite set of messages
- C is a finite set of channels
- X is a finite set of clocks
- Δ is a finite set of transitions
- $s_0 \in S$ is the initial state

A transition is a triple (s, op, s') where $s, s' \in S$ and op is one of the following:

- **nop** (no operation)
- $c!(m)$ (appends $m \in \text{Msg}$ to $c \in C$ according to FIFO)
- $c?(m \in I)$ (removes $m \in \text{Msg}$ from $c \in C$ if the age of m is in $I \in \text{Int}$)
Timed Channel System

Definition: TCS

An timed channel system (TCS) is a tuple $\mathcal{T} = (S, Msg, C, X, \Delta, s_0)$ where

- S is a finite set of states
- Msg is a finite set of messages
- C is a finite set of channels
- X is a finite set of clocks
- Δ is a finite set of transitions
- $s_0 \in S$ is the initial state

A transition is a triple (s, op, s') where $s, s' \in S$ and op is one of the following:

- nop (no operation)
- $c!(m)$ (appends $m \in Msg$ to $c \in C$ according to FIFO)
- $c?(m \in I)$ (removes $m \in Msg$ from $c \in C$ if the age of m is in $I \in Int$)
- $x \in I$ (checks whether value of $x \in X$ is in $I \in Int$)
Timed Channel System

Definition: TCS

An timed channel system (TCS) is a tuple $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ where

- S is a finite set of states
- Msg is a finite set of messages
- C is a finite set of channels
- X is a finite set of clocks
- Δ is a finite set of transitions
- $s_0 \in S$ is the initial state

A transition is a triple (s, op, s') where $s, s' \in S$ and op is one of the following:

- nop (no operation)
- $c!(m)$ (appends $m \in \text{Msg}$ to $c \in C$ according to FIFO)
- $c?(m \in I)$ (removes $m \in \text{Msg}$ from $c \in C$ if the age of m is in $I \in \text{Int}$)
- $x \in I$ (checks whether value of $x \in X$ is in $I \in \text{Int}$)
- $x \leftarrow 0$ (resets $x \in X$)
Timed Channel System

Semantics of $\mathcal{T} = (S, Msg, C, X, \Delta, s_0)$ is a transition system $(\text{Conf}_\mathcal{T}, \rightarrow_\mathcal{T})$.

Configuration from $\text{Conf}_\mathcal{T}$

Triple $\langle s, \nu, \gamma \rangle$ where $s \in S$, $\nu : X \rightarrow \mathbb{R}_{\geq 0}$, and $\gamma : C \rightarrow (Msg \times \mathbb{R}_{\geq 0})^*$.
Timed Channel System
Semantics of $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ is a transition system $(\text{Conf}_\mathcal{T}, \rightarrow_\mathcal{T})$.

Configuration from $\text{Conf}_\mathcal{T}$

Triple $\langle s, \nu, \gamma \rangle$ where $s \in S$, $\nu : X \rightarrow \mathbb{R}_{\geq 0}$, and $\gamma : C \rightarrow (\text{Msg} \times \mathbb{R}_{\geq 0})^*$.

Transitions $\rightarrow_\mathcal{T} = \rightarrow_\mathcal{T}^d \cup \rightarrow_\mathcal{T}^t$

$\langle s, \nu, \gamma \rangle \xrightarrow{d} \mathcal{T} \langle s', \nu', \gamma' \rangle$ if there is an operation op such that $(s, \text{op}, s') \in \Delta$ and one of the following holds:
Timed Channel System
Semantics of $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ is a transition system $(\text{Conf}_\mathcal{T}, \rightarrow_\mathcal{T})$.

Configuration from $\text{Conf}_\mathcal{T}$

Triple $\langle s, \nu, \gamma \rangle$ where $s \in S$, $\nu : X \rightarrow \mathbb{R}_{\geq 0}$, and $\gamma : C \rightarrow (\text{Msg} \times \mathbb{R}_{\geq 0})^*$.

Transitions $\rightarrow_\mathcal{T} = \text{d}_\rightarrow_\mathcal{T} \cup \text{t}_\rightarrow_\mathcal{T}$

$\langle s, \nu, \gamma \rangle \xrightarrow{\text{d}}_\mathcal{T} \langle s', \nu', \gamma' \rangle$ if there is an operation op such that $(s, op, s') \in \Delta$ and one of the following holds:

- $op = \text{nop}$ and $\nu = \nu'$ and $\gamma = \gamma'$
Timed Channel System
Semantics of \(T = (S, \text{Msg}, C, X, \Delta, s_0) \) is a transition system \((\text{Conf}_T, \rightarrow_\tau) \).

Configuration from \(\text{Conf}_T \)

Triple \(\langle s, \nu, \gamma \rangle \) where \(s \in S \), \(\nu : X \rightarrow \mathbb{R}_{\geq 0} \), and \(\gamma : C \rightarrow (\text{Msg} \times \mathbb{R}_{\geq 0})^* \).

Transitions \(\rightarrow_\tau = \left. \begin{align*} \frac{d}{\rightarrow_\tau} \cup \frac{t}{\rightarrow_\tau} \end{align*} \right. \)

\(\langle s, \nu, \gamma \rangle \xrightarrow{d}_\tau \langle s', \nu', \gamma' \rangle \) if there is an operation \(\text{op} \) such that \((s, \text{op}, s') \in \Delta \) and one of the following holds:

- \(\text{op} = \text{nop} \) and \(\nu = \nu' \) and \(\gamma = \gamma' \)
- \(\text{op} = c!(m) \) and \(\nu = \nu' \) and \(\gamma' = \gamma[c \mapsto (m, 0) \cdot \gamma(c)] \)
Timed Channel System

Semantics of $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ is a transition system $(\text{Conf}_\mathcal{T}, \rightarrow_{\mathcal{T}})$.

Configuration from $\text{Conf}_\mathcal{T}$

Triple $\langle s, \nu, \gamma \rangle$ where $s \in S$, $\nu : X \rightarrow \mathbb{R}_{\geq 0}$, and $\gamma : C \rightarrow (\text{Msg} \times \mathbb{R}_{\geq 0})^*$.

Transitions $\rightarrow_{\mathcal{T}} = \rightarrow_{\mathcal{T}}^d \cup \rightarrow_{\mathcal{T}}^t$

$\langle s, \nu, \gamma \rangle \xrightarrow{d} \mathcal{T} \langle s', \nu', \gamma' \rangle$ if there is an operation op such that $(s, op, s') \in \Delta$ and one of the following holds:

- $op = \text{nop}$ and $\nu = \nu'$ and $\gamma = \gamma'$
- $op = c!(m)$ and $\nu = \nu'$ and $\gamma' = \gamma[c \mapsto (m, 0) \cdot \gamma(c)]$
- $op = c?(m \in I)$ and $\nu = \nu'$ and $\exists t \in I$ such that $\gamma = \gamma'[c \mapsto \gamma'(c) \cdot (m, t)]$
Timed Channel System

Semantics of $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ is a transition system $(\text{Conf}_\mathcal{T}, \rightarrow_\mathcal{T})$.

Configuration from $\text{Conf}_\mathcal{T}$

Triple $\langle s, \nu, \gamma \rangle$ where $s \in S$, $\nu : X \rightarrow \mathbb{R}_{\geq 0}$, and $\gamma : C \rightarrow (\text{Msg} \times \mathbb{R}_{\geq 0})^*$.

Transitions $\rightarrow_\mathcal{T} = \rightarrow^d_\mathcal{T} \cup \rightarrow^t_\mathcal{T}$

$\langle s, \nu, \gamma \rangle \rightarrow^d_\mathcal{T} \langle s', \nu', \gamma' \rangle$ if there is an operation op such that $(s, op, s') \in \Delta$ and one of the following holds:

- $op = \text{nop}$ and $\nu = \nu'$ and $\gamma = \gamma'$
- $op = c!(m)$ and $\nu = \nu'$ and $\gamma' = \gamma[c \mapsto (m, 0) \cdot \gamma(c)]$
- $op = c?(m \in I)$ and $\nu = \nu'$ and $\exists t \in I$ such that $\gamma = \gamma'[c \mapsto \gamma'(c) \cdot (m, t)]$
- $op = x \in I$ and $\nu = \nu'$ and $\gamma = \gamma'$ and $\nu(x) \in I$
Timed Channel System

Semantics of $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ is a transition system $(\text{Conf}_\mathcal{T}, \rightarrow_\mathcal{T})$.

Configuration from $\text{Conf}_\mathcal{T}$

Triple $\langle s, \nu, \gamma \rangle$ where $s \in S$, $\nu : X \rightarrow \mathbb{R}_{\geq 0}$, and $\gamma : C \rightarrow (\text{Msg} \times \mathbb{R}_{\geq 0})^*$.

Transitions $\rightarrow_\mathcal{T} = \rightarrow_\mathcal{T} \cup \rightarrow_\mathcal{T}$

$\langle s, \nu, \gamma \rangle \xrightarrow{\text{d}}_\mathcal{T} \langle s', \nu', \gamma' \rangle$ if there is an operation op such that $(s, op, s') \in \Delta$ and one of the following holds:

- $op = \text{nop}$ and $\nu = \nu'$ and $\gamma = \gamma'$
- $op = c!(m)$ and $\nu = \nu'$ and $\gamma' = \gamma[c \mapsto (m, 0) \cdot \gamma(c)]$
- $op = c?(m \in I)$ and $\nu = \nu'$ and $\exists t \in I$ such that $\gamma = \gamma'[c \mapsto \gamma'(c) \cdot (m, t)]$
- $op = x \in I$ and $\nu = \nu'$ and $\gamma = \gamma'$ and $\nu(x) \in I$
- $op = x \leftarrow 0$ and $\nu' = \nu[x \mapsto 0]$ and $\gamma = \gamma'$
Timed Channel System

Semantics of $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ is a transition system $(\text{Conf}_\mathcal{T}, \rightarrow_\mathcal{T})$.

Configuration from $\text{Conf}_\mathcal{T}$

Triple $\langle s, \nu, \gamma \rangle$ where $s \in S$, $\nu : X \rightarrow \mathbb{R}_{\geq 0}$, and $\gamma : C \rightarrow (\text{Msg} \times \mathbb{R}_{\geq 0})^*$.

Transitions $\rightarrow_\mathcal{T} = \frac{d}{\rightarrow_\mathcal{T}} \cup \frac{t}{\rightarrow_\mathcal{T}}$

$\langle s, \nu, \gamma \rangle \xrightarrow{d}{\rightarrow_\mathcal{T}} \langle s', \nu', \gamma' \rangle$ if there is an operation op such that $(s, op, s') \in \Delta$ and one of the following holds:

- $op = \text{nop}$ and $\nu = \nu'$ and $\gamma = \gamma'$
- $op = c!(m)$ and $\nu = \nu'$ and $\gamma' = \gamma[c \mapsto (m, 0) \cdot \gamma(c)]$
- $op = c? (m \in I)$ and $\nu = \nu'$ and $\exists t \in I$ such that $\gamma = \gamma'[c \mapsto \gamma'(c) \cdot (m, t)]$
- $op = x \in I$ and $\nu = \nu'$ and $\gamma = \gamma'$ and $\nu(x) \in I$
- $op = x \leftarrow 0$ and $\nu' = \nu[x \mapsto 0]$ and $\gamma = \gamma'$

$\langle s, \nu, \gamma \rangle \xrightarrow{t}{\rightarrow_\mathcal{T}} \langle s', \nu', \gamma' \rangle$ if $s = s'$ and there is $t \in \mathbb{R}_{\geq 0}$ such that
Timed Channel System
Semantics of \(\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0) \) is a transition system \((\text{Conf}_\mathcal{T}, \rightarrow_\mathcal{T})\).

Configuration from \text{Conf}_\mathcal{T}

Triple \(\langle s, \nu, \gamma \rangle \) where \(s \in S \), \(\nu : X \rightarrow \mathbb{R}_{\geq 0} \), and \(\gamma : C \rightarrow (\text{Msg} \times \mathbb{R}_{\geq 0})^* \).

Transitions
\[\mathcal{T} \rightarrow = \mathcal{T} \rightarrow_d \cup \mathcal{T} \rightarrow_t \]

\(\langle s, \nu, \gamma \rangle \xrightarrow{\text{d}} \mathcal{T} \langle s', \nu', \gamma' \rangle \) if there is an operation \(\text{op} \) such that \((s, \text{op}, s') \in \Delta \) and one of the following holds:

- \(\text{op} = \text{nop} \) and \(\nu = \nu' \) and \(\gamma = \gamma' \)
- \(\text{op} = c! (m) \) and \(\nu = \nu' \) and \(\gamma' = \gamma[c \mapsto (m, 0) \cdot \gamma(c)] \)
- \(\text{op} = c? (m \in I) \) and \(\nu = \nu' \) and \(\exists t \in I \) such that \(\gamma = \gamma'[c \mapsto \gamma'(c) \cdot (m, t)] \)
- \(\text{op} = x \in I \) and \(\nu = \nu' \) and \(\gamma = \gamma' \) and \(\nu(x) \in I \)
- \(\text{op} = x \leftarrow 0 \) and \(\nu' = \nu[x \mapsto 0] \) and \(\gamma = \gamma' \)

\(\langle s, \nu, \gamma \rangle \xrightarrow{\text{t}} \mathcal{T} \langle s', \nu', \gamma' \rangle \) if \(s = s' \) and there is \(t \in \mathbb{R}_{\geq 0} \) such that

- \(\nu' = \nu + t \)
Timed Channel System

Semantics of $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ is a transition system $(\text{Conf}_\mathcal{T}, \rightarrow_\mathcal{T})$.

Configuration from $\text{Conf}_\mathcal{T}$

Triple $\langle s, \nu, \gamma \rangle$ where $s \in S$, $\nu : X \rightarrow \mathbb{R}_{\geq 0}$, and $\gamma : C \rightarrow (\text{Msg} \times \mathbb{R}_{\geq 0})^*$.

Transitions

$\rightarrow_\mathcal{T} = \xrightarrow{d} \mathcal{T} \cup \xrightarrow{t} \mathcal{T}$

$\langle s, \nu, \gamma \rangle \xrightarrow{d} \mathcal{T} \langle s', \nu', \gamma' \rangle$ if there is an operation op such that $(s, op, s') \in \Delta$ and one of the following holds:

- $op = \text{nop}$ and $\nu = \nu'$ and $\gamma = \gamma'$
- $op = c!(m)$ and $\nu = \nu'$ and $\gamma' = \gamma[c \mapsto (m, 0) \cdot \gamma(c)]$
- $op = c?(m \in I)$ and $\nu = \nu'$ and $\exists t \in I$ such that $\gamma = \gamma'[c \mapsto \gamma'(c) \cdot (m, t)]$
- $op = x \in I$ and $\nu = \nu'$ and $\gamma = \gamma'$ and $\nu(x) \in I$
- $op = x \leftarrow 0$ and $\nu' = \nu[x \mapsto 0]$ and $\gamma = \gamma'$

$\langle s, \nu, \gamma \rangle \xrightarrow{t} \mathcal{T} \langle s', \nu', \gamma' \rangle$ if $s = s'$ and there is $t \in \mathbb{R}_{\geq 0}$ such that

- $\nu' = \nu + t$
- $\gamma'(c) = \gamma(c) + t$
Timed Channel System
Semantics of $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ is a transition system $(\text{Conf}_\mathcal{T}, \rightarrow_{\mathcal{T}})$.

Configuration from $\text{Conf}_\mathcal{T}$

Triple $\langle s, \nu, \gamma \rangle$ where $s \in S$, $\nu : X \rightarrow \mathbb{R}_{\geq 0}$, and $\gamma : C \rightarrow (\text{Msg} \times \mathbb{R}_{\geq 0})^*$.

Transitions $\rightarrow_{\mathcal{T}} = \rightarrow_{\mathcal{T}} \cup \rightarrow_{\mathcal{T}}$

$\langle s, \nu, \gamma \rangle \xrightarrow{d}_{\mathcal{T}} \langle s', \nu', \gamma' \rangle$ if there is an operation op such that $(s, op, s') \in \Delta$ and one of the following holds:

- $op = \text{nop}$ and $\nu = \nu'$ and $\gamma = \gamma'$
- $op = c!(m)$ and $\nu = \nu'$ and $\gamma' = \gamma[c \mapsto (m, 0) \cdot \gamma(c)]$
- $op = c?(m \in I)$ and $\nu = \nu'$ and $\exists t \in I$ such that $\gamma = \gamma'[c \mapsto \gamma'(c) \cdot (m, t)]$
- $op = x \in I$ and $\nu = \nu'$ and $\gamma = \gamma'$ and $\nu(x) \in I$
- $op = x \leftarrow 0$ and $\nu' = \nu[x \mapsto 0]$ and $\gamma = \gamma'$

$\langle s, \nu, \gamma \rangle \xrightarrow{t}_{\mathcal{T}} \langle s', \nu', \gamma' \rangle$ if $s = s'$ and there is $t \in \mathbb{R}_{\geq 0}$ such that

- $\nu' = \nu + t$
- $\gamma'(c) = \gamma(c) + t$

Here, $[(m_1, t_1) \ldots (m_n, t_n)] + t := (m_1, t_1 + t) \ldots (m_n, t_n + t)$.
Reachability Problem for TCS

Definition: Control-state reachability

Let $\mathcal{T} = (S, Msg, C, X, \Delta, s_0)$ be a TCS. A state $s \in S$ is reachable in \mathcal{T} if
Definition: Control-state reachability

Let $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS. A state $s \in S$ is reachable in \mathcal{T} if

$$\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\tau}^\ast \langle s, \nu, \gamma \rangle$$

for some $\nu_0, \gamma_0, \nu, \gamma$ such that
Definition: Control-state reachability

Let $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS. A state $s \in S$ is reachable in \mathcal{T} if

$$\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\gamma}^* \langle s, \nu, \gamma \rangle$$

for some $\nu_0, \gamma_0, \nu, \gamma$ such that

- $\nu_0(x) = 0$ for all $x \in X$
- $\gamma_0(c) = \varepsilon$ for all $c \in C$
Reachability Problem for TCS

Definition: Control-state reachability
Let $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS. A state $s \in S$ is reachable in \mathcal{T} if

$$\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\ast T} \langle s, \nu, \gamma \rangle$$

for some $\nu_0, \gamma_0, \nu, \gamma$ such that

- $\nu_0(x) = 0$ for all $x \in X$
- $\gamma_0(c) = \varepsilon$ for all $c \in C$

Definition: Control-state reachability problem
The control-state reachability problem for TCS is defined as follows:

INPUT: TCS $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ and $s \in S$.

QUESTION: Is s reachable in \mathcal{T}?
Reachability Problem for TCS

Definition: Control-state reachability
Let $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS. A state $s \in S$ is reachable in \mathcal{T} if

$$\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\gamma}^* \langle s, \nu, \gamma \rangle$$

for some $\nu_0, \gamma_0, \nu, \gamma$ such that
- $\nu_0(x) = 0$ for all $x \in X$
- $\gamma_0(c) = \varepsilon$ for all $c \in C$

Definition: Control-state reachability problem
The control-state reachability problem for TCS is defined as follows:

Input: TCS $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ and $s \in S$.

Question: Is s reachable in \mathcal{T}?

Theorem:
The control-state reachability problem for TCS is undecidable.
Reachability Problem for TCS

Definition: Control-state reachability

Let \(\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0) \) be a TCS. A state \(s \in S \) is reachable in \(\mathcal{T} \) if

\[
\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\star}^\mathcal{T} \langle s, \nu, \gamma \rangle
\]

for some \(\nu_0, \gamma_0, \nu, \gamma \) such that

- \(\nu_0(x) = 0 \) for all \(x \in X \)
- \(\gamma_0(c) = \varepsilon \) for all \(c \in C \)

Definition: Control-state reachability problem

The control-state reachability problem for TCS is defined as follows:

Input: TCS \(\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0) \) and \(s \in S \).

Question: Is \(s \) reachable in \(\mathcal{T} \)?

Theorem:

The control-state reachability problem for TCS is undecidable.

\(\xrightarrow{\text{Alternative semantics: under- and over-approximation}} \)
Under- and over-approximation

Let $\mathcal{T} = (S, Msg, C, X, \Delta, s_0)$ be a TCS.

B-bounded semantics for $B \in \mathbb{N}$: $(\text{Conf}_\mathcal{T}, \rightarrow_{\mathcal{T}, B})$

$\langle s, \nu, \gamma \rangle \rightarrow_{\mathcal{T}, B} \langle s', \nu', \gamma' \rangle$ if

- $\langle s, \nu, \gamma \rangle \rightarrow_{\mathcal{T}} \langle s', \nu', \gamma' \rangle$
- $|\gamma'(c)| \leq B$ for all $c \in Ch$
Under- and over-approximation

Let $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS.

B-bounded semantics for $B \in \mathbb{N}$: $(\text{Conf}_{\mathcal{T}}, \rightarrow_{\mathcal{T}, B})$

\[\langle s, \nu, \gamma \rangle \rightarrow_{\mathcal{T}, B} \langle s', \nu', \gamma' \rangle \text{ if} \]

- $\langle s, \nu, \gamma \rangle \rightarrow_{\mathcal{T}} \langle s', \nu', \gamma' \rangle$
- $|\gamma'(c)| \leq B$ for all $c \in \text{Ch}$

Lossy semantics: $(\text{Conf}_{\mathcal{T}}, \rightarrow_{\mathcal{T}, \text{lossy}})$

\[\rightarrow_{\mathcal{T}} = \frac{d}{\rightarrow_{\mathcal{T}}} \cup \frac{t}{\rightarrow_{\mathcal{T}}} \cup \frac{l}{\rightarrow_{\mathcal{T}}} \text{ where } \langle s, \nu, \gamma \rangle \rightarrow_{\mathcal{T}} \langle s', \nu', \gamma' \rangle \text{ if} \]

- $s = s$
- $\nu = \nu'$
- $\gamma'(c) \sqsubseteq \gamma(c)$ for all $c \in C$

Here, $a_1 \ldots a_m \sqsubseteq b_1 \ldots b_n$ is the subword ordering: there is a strictly increasing injective mapping $g : \{1, \ldots, m\} \rightarrow \{1, \ldots, n\}$ such that $a_i = b_{g(i)}$.
Reachability Problem for TCS

Definition: B-bounded and lossy control-state reachability

Let $\mathcal{T} = (S, Msg, C, X, \Delta, s_0)$ be a TCS and $s \in S$.
Reachability Problem for TCS

Definition: B-bounded and lossy control-state reachability

Let $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS and $s \in S$. We say that s is

- B-reachable in \mathcal{T} if $\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\ast, B} \langle s, \nu, \gamma \rangle$
Reachability Problem for TCS

Definition: B-bounded and lossy control-state reachability

Let $\mathcal{T} = (S, Msg, C, X, \Delta, s_0)$ be a TCS and $s \in S$. We say that s is

- B-reachable in \mathcal{T} if $\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\ast}_{\mathcal{T},B} \langle s, \nu, \gamma \rangle$
- lossy-reachable in \mathcal{T} if $\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\ast}_{\mathcal{T},\text{lossy}} \langle s, \nu, \gamma \rangle$
Reachability Problem for TCS

Definition: B-bounded and lossy control-state reachability

Let $T = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS and $s \in S$. We say that s is

- B-reachable in T if $\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\star}_{T,B} \langle s, \nu, \gamma \rangle$
- lossy-reachable in T if $\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\star}_{T,\text{lossy}} \langle s, \nu, \gamma \rangle$

for some $\nu_0, \gamma_0, \nu, \gamma$ such that $\nu_0(x) = 0$ for all $x \in X$ and $\gamma_0(c) = \varepsilon$ for all $c \in C$.
Reachability Problem for TCS

Definition: B-bounded and lossy control-state reachability

Let $T = (S, Msg, C, X, \Delta, s_0)$ be a TCS and $s \in S$. We say that s is

- B-reachable in T if $\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\ast}_{T,B} \langle s, \nu, \gamma \rangle$
- lossy-reachable in T if $\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\ast}_{T,\text{lossy}} \langle s, \nu, \gamma \rangle$

for some $\nu_0, \gamma_0, \nu, \gamma$ such that $\nu_0(x) = 0$ for all $x \in X$ and $\gamma_0(c) = \varepsilon$ for all $c \in C$.

Definition: Bounded control-state reachability problem

INPUT: TCS T, state $s \in S$, and $B \in \mathbb{N}$.

QUESTION: Is s B-reachable in T?
Reachability Problem for TCS

Definition: B-bounded and lossy control-state reachability

Let $T = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS and $s \in S$. We say that s is

- B-reachable in T if $\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{T,B} \langle s, \nu, \gamma \rangle$ for some $\nu_0, \gamma_0, \nu, \gamma$ such that $\nu_0(x) = 0$ for all $x \in X$ and $\gamma_0(c) = \varepsilon$ for all $c \in C$.

- lossy-reachable in T if $\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{T,\text{lossy}} \langle s, \nu, \gamma \rangle$ for some $\nu_0, \gamma_0, \nu, \gamma$ such that $\nu_0(x) = 0$ for all $x \in X$ and $\gamma_0(c) = \varepsilon$ for all $c \in C$.

Definition: Bounded control-state reachability problem

Input: TCS T, state $s \in S$, and $B \in \mathbb{N}$.

Question: Is s B-reachable in T?

Definition: Lossy control-state reachability problem

Input: TCS T and state s.

Question: Is s lossy-reachable in T?
Reachability Problem for TCS

Definition: Bounded and lossy control-state reachability

Let $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS and $s \in S$. We say that s is

- B-reachable in \mathcal{T} if $\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\star}_{\mathcal{T}, B} \langle s, \nu, \gamma \rangle$
- lossy-reachable in \mathcal{T} if $\langle s_0, \nu_0, \gamma_0 \rangle \xrightarrow{\star}_T,\text{lossy} \langle s, \nu, \gamma \rangle$

for some $\nu_0, \gamma_0, \nu, \gamma$ such that $\nu_0(x) = 0$ for all $x \in X$ and $\gamma_0(c) = \varepsilon$ for all $c \in C$.

Definition: Bounded control-state reachability problem

Input: TCS \mathcal{T}, state $s \in S$, and $B \in \mathbb{N}$.

Question: Is s B-reachable in \mathcal{T}?

Definition: Lossy control-state reachability problem

Input: TCS \mathcal{T} and state s.

Question: Is s lossy-reachable in \mathcal{T}?

Theorem:

The following problems are decidable:
- the bounded control-state reachability problem for TCS
- the lossy control-state reachability problem for TCS [Abdulla et al. 2012]
Theorem:

The bounded control-state reachability problem for TCS is decidable.
Reachability Problem for TCS

Theorem:
The bounded control-state reachability problem for TCS is decidable.

Idea (suppose $B = 3$):

\[c!(m) \quad c!(m) \quad c?(m \in I) \quad c!(m) \quad c!(m) \quad c?(m \in I) \]

Channel $c \implies$
Theorem:
The bounded control-state reachability problem for TCS is decidable.

Idea (suppose $B = 3$):

\[
\begin{align*}
&c!(m) & c!(m) & c?(&m \in I) & c!(m) & c!(m) & c?(&m \in I) \\
&x^1_c & \leftarrow 0
\end{align*}
\]

Channel $c \rightarrow (m, 1)$
Theorem:
The bounded control-state reachability problem for TCS is decidable.

Idea (suppose $B = 3$):

\[
\begin{align*}
&c!(m) & c!(m) & c?(m \in I) & c!(m) & c!(m) & c?(m \in I) \\
&x^1_c \leftarrow 0 & x^2_c \leftarrow 0
\end{align*}
\]

Channel $c \rightarrow (m, 2) (m, 1)$
Reachability Problem for TCS

Theorem:
The bounded control-state reachability problem for TCS is decidable.

Idea (suppose $B = 3$):

\[
\begin{align*}
& c!(m) & c!(m) & c?(m \in I) & c!(m) & c!(m) & c?(m \in I) \\
& x_1^c \leftarrow 0 & x_2^c \leftarrow 0 & x_1^c \in I \\
\end{align*}
\]

Channel $c \iff (m, 2)$
Reachability Problem for TCS

Theorem:

The bounded control-state reachability problem for TCS is decidable.

Idea (suppose $B = 3$):

$c!(m)$ $c!(m)$ $c? (m \in I)$ $c!(m)$ $c!(m)$ $c? (m \in I)$

$x_1^c \leftarrow 0$ $x_2^c \leftarrow 0$ $x_1^c \in I$ $x_1^c \leftarrow 0$

Channel $c \implies (m, 1)$ $(m, 2)$
Reachability Problem for TCS

Theorem:
The bounded control-state reachability problem for TCS is decidable.

Idea (suppose $B = 3$):

\[
\begin{align*}
 &c!(m) & c!(m) & c?(m \in I) & c!(m) & c!(m) & c?(m \in I) \\
 &x^1_c \leftarrow 0 & x^2_c \leftarrow 0 & x^1_c \in I & x^1_c \leftarrow 0 & x^3_c \leftarrow 0 \\
\end{align*}
\]

Channel $c \implies (m, 3) (m, 1) (m, 2)$
Reachability Problem for TCS

Theorem:
The bounded control-state reachability problem for TCS is decidable.

Idea (suppose \(B = 3 \)):

\[
\begin{align*}
c!(m) & \quad c?(m \in I) \\
x_c^1 & \leftarrow 0 & x_c^2 & \leftarrow 0 & x_c^1 & \in I & x_c^1 & \leftarrow 0 & x_c^3 & \leftarrow 0 & x_c^2 & \in I
\end{align*}
\]

Channel \(c \rightarrow (m, 3) (m, 1) \)
Theorem:
The bounded control-state reachability problem for TCS is decidable.

Idea (suppose \(B = 3 \)):

\[
\begin{align*}
&c!(m) & c!(m) & c?(m \in I) & c!(m) & c!(m) & c?(m \in I) \\
x^1_c & \leftarrow 0 & x^2_c & \leftarrow 0 & x^1_c & \in I & x^1_c & \leftarrow 0 & x^3_c & \leftarrow 0 & x^2_c & \in I
\end{align*}
\]

Channel \(c \quad \rightarrow \quad (m, 3) \quad (m, 1) \)

Proof:
Let \(\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0) \) be a TCS and \(B \in \mathbb{N} \). Translate \(\mathcal{T} \) into a “timed automaton” \(\mathcal{A}_\mathcal{T} = (S', X', \Delta', s'_0) \).
Reachability Problem for TCS

Theorem:

The bounded control-state reachability problem for TCS is decidable.

Idea (suppose $B = 3$):

$c!(m) \quad c!(m) \quad c?(m \in I) \quad c!(m) \quad c!(m) \quad c?(m \in I)$

$x^1_c \leftarrow 0 \quad x^2_c \leftarrow 0 \quad x^1_c \in I \quad x^1_c \leftarrow 0 \quad x^3_c \leftarrow 0 \quad x^2_c \in I$

Channel $c \quad \Rightarrow \quad (m, 3) (m, 1)$

Proof:

Let $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS and $B \in \mathbb{N}$. Translate \mathcal{T} into a “timed automaton” $A_{\mathcal{T}} = (S', X', \Delta', s'_0)$ (every operation is of the form nop, $x \in I$, or $x \leftarrow 0$ where $x \in X'$ and $I \in \text{Int}$):
Reachability Problem for TCS

Theorem:
The bounded control-state reachability problem for TCS is decidable.

Idea (suppose $B = 3$):

\[
\begin{align*}
&c!(m) & c!(m) & c?(m \in I) & c!(m) & c!(m) & c?(m \in I) \\
&x_1^c \leftarrow 0 & x_2^c \leftarrow 0 & x_1^c \in I & x_1^c \leftarrow 0 & x_3^c \leftarrow 0 & x_2^c \in I
\end{align*}
\]

Channel $c \implies (m, 3) (m, 1)$

Proof:
Let $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS and $B \in \mathbb{N}$. Translate \mathcal{T} into a “timed automaton” $A_{\mathcal{T}} = (S', X', \Delta', s'_0)$ (every operation is of the form nop, $x \in I$, or $x \leftarrow 0$ where $x \in X'$ and $I \in \text{Int}$):

- $X' = X \cup \{x_i^c | i \in \{1, \ldots, B\} \text{ and } c \in C\}$
Reachability Problem for TCS

Theorem:
The bounded control-state reachability problem for TCS is decidable.

Idea (suppose $B = 3$):

\[
\begin{array}{ccccccc}
 c!(m) & c!(m) & c?(m \in I) & c!(m) & c!(m) & c?(m \in I) \\
 x_1^c \leftarrow 0 & x_2^c \leftarrow 0 & x_1^c \in I & x_1^c \leftarrow 0 & x_3^c \leftarrow 0 & x_2^c \in I \\
\end{array}
\]

Channel $c \iff (m, 3) (m, 1)$

Proof:
Let $T = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS and $B \in \mathbb{N}$. Translate T into a “timed automaton” $A_T = (S', X', \Delta', s'_0)$ (every operation is of the form nop, $x \in I$, or $x \leftarrow 0$ where $x \in X'$ and $I \in \text{Int}$):

- $X' = X \cup \{x_i^c \mid i \in \{1, \ldots, B\} \text{ and } c \in C\}$
- $S' = S \times \{\gamma \mid \gamma : C \to (\text{Msg} \times \{1, \ldots, B\})^{\leq B}\}$
Reachability Problem for TCS

Theorem:

The bounded control-state reachability problem for TCS is decidable.

Idea (suppose $B = 3$):

\[
\begin{align*}
&c!(m) & c!(m) & c?(m \in I) & c!(m) & c!(m) & c?(m \in I) \\
&x^1_c \leftarrow 0 & x^2_c \leftarrow 0 & x^1_c \in I & x^1_c \leftarrow 0 & x^3_c \leftarrow 0 & x^2_c \in I
\end{align*}
\]

Channel $c \rightarrow (m, 3) (m, 1)$

Proof:

Let $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS and $B \in \mathbb{N}$. Translate \mathcal{T} into a “timed automaton” $\mathcal{A_T} = (S', X', \Delta', s'_0)$ (every operation is of the form nop, $x \in I$, or $x \leftarrow 0$ where $x \in X'$ and $I \in \text{Int}$):

- $X' = X \cup \{x^i_c \mid i \in \{1, \ldots, B\}$ and $c \in C\}$
- $S' = S \times \{\gamma \mid \gamma : C \rightarrow (\text{Msg} \times \{1, \ldots, B\})^{\leq B}\}$
 - message (m, i) in channel c should be checked with clock x^i_c
Reachability Problem for TCS

Theorem:
The bounded control-state reachability problem for TCS is decidable.

Idea (suppose $B = 3$):

$$
egin{align*}
 c!(m) & \quad c!(m) & \quad c?(m \in I) & \quad c!(m) & \quad c!(m) & \quad c?(m \in I) \\
 x_1^c \leftarrow 0 & \quad x_2^c \leftarrow 0 & \quad x_1^c \in I & \quad x_1^c \leftarrow 0 & \quad x_3^c \leftarrow 0 & \quad x_2^c \in I
\end{align*}
$$

Channel $c \rightarrow (m, 3)(m, 1)$

Proof:
Let $T = (S, \text{Msg}, C, X, \Delta, s_0)$ be a TCS and $B \in \mathbb{N}$. Translate T into a “timed automaton” $A_T = (S', X', \Delta', s'_0)$ (every operation is of the form nop, $x \in I$, or $x \leftarrow 0$ where $x \in X'$ and $I \in \text{Int}$):

- $X' = X \cup \{x_i^c \mid i \in \{1, \ldots, B\} \text{ and } c \in C\}$
- $S' = S \times \{\gamma \mid \gamma : C \rightarrow (\text{Msg} \times \{1, \ldots, B\})^{\leq B}\}$
 - message (m, i) in channel c should be checked with clock x_i^c
- $s'_0 = \langle s_0, \gamma_0 \rangle$ where $\gamma_0(c) = \varepsilon$ for all $c \in C$
We have a transition
\[((s, \gamma), \alpha, (s', \gamma')) \in \Delta' \]
if there is \(op \) such that \((s, op, s') \in \Delta\) and one of the following holds:
We have a transition

\[(\langle s, \gamma \rangle, \alpha, \langle s', \gamma' \rangle) \in \Delta' \]

if there is \(op \) such that \((s, op, s') \in \Delta \) and one of the following holds:

- simulation of “non-channel” transition in \(\mathcal{T} \):
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

\[(s, \gamma, \alpha, s', \gamma') \in \Delta'\]

if there is \(op\) such that \((s, op, s') \in \Delta\) and one of the following holds:

- simulation of “non-channel” transition in \(\mathcal{T}\):
 - \(\alpha = op \in \{\text{nop}\} \cup \{x \in I \mid x \in X\} \cup \{x \leftarrow 0 \mid x \in X\}\)
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

\[((s, \gamma), \alpha, (s', \gamma')) \in \Delta' \]

if there is \(op \) such that \((s, op, s') \in \Delta\) and one of the following holds:

- simulation of “non-channel” transition in \(\mathcal{T} \):
 - \(\alpha = op \in \{\text{nop}\} \cup \{x \in I \mid x \in X\} \cup \{x \leftarrow 0 \mid x \in X\} \)
 - \(\gamma = \gamma' \)
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

\[(\langle s, \gamma \rangle, \alpha, \langle s', \gamma' \rangle) \in \Delta'\]

if there is \(op\) such that \((s, op, s') \in \Delta\) and one of the following holds:

- simulation of “non-channel” transition in \(T\):
 - \(\alpha = op \in \{\text{nop}\} \cup \{x \in I \mid x \in X\} \cup \{x \leftarrow 0 \mid x \in X\}\)
 - \(\gamma = \gamma'\)

- simulation of send transition in \(T\):
 there are \(c, m, \) and \(w = (m_1, i_1) \ldots (m_n, i_n)\) such that
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

\[(\langle s, \gamma \rangle, \alpha, \langle s', \gamma' \rangle) \in \Delta'\]

if there is \(op \) such that \((s, op, s') \in \Delta \) and one of the following holds:

- simulation of “non-channel” transition in \(T \):
 - \(\alpha = op \in \{ \text{nop} \} \cup \{ x \in I \mid x \in X \} \cup \{ x \leftarrow 0 \mid x \in X \} \)
 - \(\gamma = \gamma' \)

- simulation of send transition in \(T \):
 - there are \(c, m, \) and \(w = (m_1, i_1) \ldots (m_n, i_n) \) such that
 - \(op = c!(m) \)
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

\[(\langle s, \gamma \rangle, \alpha, \langle s', \gamma' \rangle) \in \Delta' \]

if there is \(op \) such that \((s, op, s') \in \Delta \) and one of the following holds:

- simulation of “non-channel” transition in \(\mathcal{T} \):
 - \(\alpha = op \in \{ \text{nop} \} \cup \{ x \in I \mid x \in X \} \cup \{ x \leftarrow 0 \mid x \in X \} \)
 - \(\gamma = \gamma' \)

- simulation of send transition in \(\mathcal{T} \):
 there are \(c, m, \) and \(w = (m_1, i_1) \ldots (m_n, i_n) \) such that
 - \(op = c!(m) \)
 - \(\gamma(c) = w \)
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

\((\langle s, \gamma \rangle, \alpha, \langle s', \gamma' \rangle) \in \Delta'\)

if there is \(op\) such that \((s, op, s') \in \Delta\) and one of the following holds:

- simulation of “non-channel” transition in \(\mathcal{T}\):
 - \(\alpha = op \in \{\text{nop}\} \cup \{x \in I \mid x \in X\} \cup \{x \leftarrow 0 \mid x \in X\}\)
 - \(\gamma = \gamma'\)

- simulation of send transition in \(\mathcal{T}\):
 there are \(c, m, \) and \(w = (m_1, i_1) \ldots (m_n, i_n)\) such that
 - \(op = c!(m)\)
 - \(\gamma(c) = w\)
 - \(\alpha = x^i_c \leftarrow 0\)
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

\[(\langle s, \gamma \rangle, \alpha, \langle s', \gamma' \rangle) \in \Delta'\]

if there is \(op\) such that \((s, op, s') \in \Delta\) and one of the following holds:

- simulation of “non-channel” transition in \(T\):
 - \(\alpha = op \in \{\text{nop}\} \cup \{x \in I \mid x \in X\} \cup \{x \leftarrow 0 \mid x \in X\}\)
 - \(\gamma = \gamma'\)

- simulation of send transition in \(T\):
 there are \(c, m,\) and \(w = (m_1, i_1) \ldots (m_n, i_n)\) such that
 - \(op = c!(m)\)
 - \(\gamma(c) = w\)
 - \(\alpha = x^i_c \leftarrow 0\)
 - \(\gamma' = \gamma[c \mapsto (m, i) \cdot w]\)
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

$$(\langle s, \gamma \rangle, \alpha, \langle s', \gamma' \rangle) \in \Delta'$$

if there is op such that $(s, op, s') \in \Delta$ and one of the following holds:

- simulation of “non-channel” transition in T:
 - $\alpha = op \in \{\text{nop}\} \cup \{x \in I \mid x \in X\} \cup \{x \leftarrow 0 \mid x \in X\}$
 - $\gamma = \gamma'$

- simulation of send transition in T:
 - there are c, m, and $w = (m_1, i_1) \ldots (m_n, i_n)$ such that
 - $op = c!(m)$
 - $\gamma(c) = w$
 - $\alpha = x^i_c \leftarrow 0$
 - $\gamma' = \gamma[c \mapsto (m, i) \cdot w]$

where $i = \min(\{1, \ldots, B\} \setminus \{i_1, \ldots, i_n\})$
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

\((⟨s, γ⟩, α, ⟨s', γ'⟩) \in Δ'\)

if there is \(op\) such that \((s, op, s') \in Δ\) and one of the following holds:

- simulation of “non-channel” transition in \(T\):
 - \(α = op \in \{\text{nop}\} \cup \{x \in I \mid x \in X\} \cup \{x \leftarrow 0 \mid x \in X\}\)
 - \(γ = γ'\)

- simulation of send transition in \(T\):
 there are \(c, m,\) and \(w = (m_1, i_1) \ldots (m_n, i_n)\) such that
 - \(op = c!(m)\)
 - \(γ'(c) = w\)
 - \(α = x^i_c \leftarrow 0\)
 - \(γ' = γ[c \mapsto (m, i) \cdot w]\)
 where \(i = \min(\{1, \ldots, B\} \setminus \{i_1, \ldots, i_n\})\)

- simulation of receive transition in \(T\):
 there are \(c, m,\) and \(i \in \{1, \ldots, B\}\) such that
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

\((\langle s, \gamma \rangle, \alpha, \langle s', \gamma' \rangle) \in \Delta'\)

if there is \(op\) such that \((s, op, s') \in \Delta\) and one of the following holds:

- **simulation of “non-channel” transition in \(T\):**
 - \(\alpha = op \in \{\text{nop}\} \cup \{x \in I \mid x \in X\} \cup \{x \leftarrow 0 \mid x \in X\}\)
 - \(\gamma = \gamma'\)

- **simulation of send transition in \(T\):**
 there are \(c, m,\) and \(w = (m_1, i_1) \ldots (m_n, i_n)\) such that
 - \(op = c!(m)\)
 - \(\gamma(c) = w\)
 - \(\alpha = x^i_c \leftarrow 0\)
 - \(\gamma' = \gamma[c \mapsto (m, i) \cdot w]\)
 where \(i = \min(\{1, \ldots, B\} \setminus \{i_1, \ldots, i_n\})\)

- **simulation of receive transition in \(T\):**
 there are \(c, m,\) and \(i \in \{1, \ldots, B\}\) such that
 - \(op = c?(m \in I)\) for \(c \in C, m \in \text{Msg},\) and \(I \in \text{Int}\)
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

\[((s, \gamma), \alpha, (s', \gamma')) \in \Delta' \]

if there is \(op \) such that \((s, op, s') \in \Delta\) and one of the following holds:

- simulation of "non-channel" transition in \(\mathcal{T} \):
 - \(\alpha = op \in \{ \text{nop} \} \cup \{ x \in I \mid x \in X \} \cup \{ x \leftarrow 0 \mid x \in X \} \)
 - \(\gamma = \gamma' \)

- simulation of send transition in \(\mathcal{T} \):
 there are \(c, m, \) and \(w = (m_1, i_1) \ldots (m_n, i_n) \) such that
 - \(op = c!(m) \)
 - \(\gamma(c) = w \)
 - \(\alpha = x^i_c \leftarrow 0 \)
 - \(\gamma' = \gamma[c \mapsto (m, i) \cdot w] \)
 where \(i = \min(\{1, \ldots, B\} \setminus \{i_1, \ldots, i_n\}) \)

- simulation of receive transition in \(\mathcal{T} \):
 there are \(c, m, \) and \(i \in \{1, \ldots, B\} \) such that
 - \(op = c?(m \in I) \) for \(c \in C, m \in \text{Msg}, \) and \(I \in \text{Int} \)
 - \(\gamma = \gamma'[c \mapsto \gamma'(c) \cdot (m, i)] \)
Reachability Problem for TCS

Proof: (cntd.)

We have a transition

\[(\langle s, \gamma \rangle, \alpha, \langle s', \gamma' \rangle) \in \Delta'\]

if there is \(op\) such that \((s, op, s') \in \Delta\) and one of the following holds:

- simulation of "non-channel" transition in \(\mathcal{T}\):
 - \(\alpha = op \in \{nop\} \cup \{x \in I \mid x \in X\} \cup \{x \leftarrow 0 \mid x \in X\}\)
 - \(\gamma = \gamma'\)

- simulation of send transition in \(\mathcal{T}\):
 - there are \(c, m,\) and \(w = (m_1, i_1, \ldots, m_n, i_n)\) such that
 - \(op = c!(m)\)
 - \(\gamma(c) = w\)
 - \(\alpha = x^i_c \leftarrow 0\)
 - \(\gamma' = \gamma[c \mapsto (m, i) \cdot w]\)
 - where \(i = \min(\{1, \ldots, B\} \setminus \{i_1, \ldots, i_n\})\)

- simulation of receive transition in \(\mathcal{T}\):
 - there are \(c, m,\) and \(i \in \{1, \ldots, B\}\) such that
 - \(op = c?(m \in I)\) for \(c \in C, m \in Msg,\) and \(I \in Int\)
 - \(\gamma = \gamma'[c \mapsto \gamma'(c) \cdot (m, i)]\)
 - \(\alpha = x^i_c \in I\)
Reachability Problem for TCS

Proof: (cntd.)

We reduced $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ to a particular TCS $\mathcal{A_T} = (S', X', \Delta', s'_0)$ such that, for all $s \in S$, we have
Reachability Problem for TCS

Proof: (cntd.)

We reduced $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ to a particular TCS $\mathcal{A}_\mathcal{T} = (S', X', \Delta', s'_0)$ such that, for all $s \in S$, we have

- s is reachable in \mathcal{T} iff
- $\langle s, \gamma \rangle$ is reachable in $\mathcal{A}_\mathcal{T}$ for some γ
Reachability Problem for TCS

Proof: (cntd.)

We reduced $T = (S, \text{Msg}, C, X, \Delta, s_0)$ to a particular TCS $A_T = (S', X', \Delta', s'_0)$ such that, for all $s \in S$, we have

- s is reachable in T iff
- $\langle s, \gamma \rangle$ is reachable in A_T for some γ

Correctness proof is via mimicking a timed run of T in A_T, and vice versa (Exercise).
Proof: (cntd.)

We reduced $T = (S, \text{Msg}, C, X, \Delta, s_0)$ to a particular TCS $A_T = (S', X', \Delta', s'_0)$ such that, for all $s \in S$, we have

- s is reachable in T iff
- $\langle s, \gamma \rangle$ is reachable in A_T for some γ

Correctness proof is via mimicking a timed run of T in A_T, and vice versa (Exercise).

Theorem: [Abdulla, Atig, Cederberg 2012]

The lossy control-state reachability problem for TCS is decidable.
Reachability Problem for TCS

Proof: (cntd.)

We reduced $\mathcal{T} = (S, \text{Msg}, C, X, \Delta, s_0)$ to a particular TCS $\mathcal{A_T} = (S', X', \Delta', s'_0)$ such that, for all $s \in S$, we have

- s is reachable in \mathcal{T} iff
- $\langle s, \gamma \rangle$ is reachable in $\mathcal{A_T}$ for some γ

Correctness proof is via mimicking a *timed* run of \mathcal{T} in $\mathcal{A_T}$, and vice versa (Exercise).

Theorem: [Abdulla, Atig, Cederberg 2012]

The lossy control-state reachability problem for TCS is decidable.

Proof: (sketch)

- Reduce problem to reachability problem in untimed model (infinite-state).
- Show that untimed model generates transition system that is well quasi ordered.
Petri Nets
Petri Nets
Petri Nets

\[\begin{align*}
\text{t}_3 &\quad \text{p}_1 \\
\text{p}_1 &\quad \text{t}_1 \\
\text{t}_1 &\quad \text{p}_0 \\
\text{p}_0 &\quad \text{t}_2 \\
\text{t}_2 &\quad \text{p}_2 \\
\text{p}_2 &\quad \text{t}_4 \\
\text{t}_4 &\quad \text{t}_3
\end{align*} \]
Petri Nets
Petri Nets

\[p_0 \]

\[p_1 \]

\[p_2 \]

\[t_1 \]

\[t_2 \]

\[t_3 \]

\[t_4 \]
Petri Nets

\[p_0 \]

\[t_1 \rightarrow p_1 \]

\[t_2 \rightarrow p_2 \]

\[t_3 \rightarrow p_1 \]

\[t_4 \rightarrow p_2 \]

\[p_1 \rightarrow t_1 \]

\[p_2 \rightarrow t_2 \]

\[p_0 \rightarrow t_2 \]

\[p_0 \rightarrow t_1 \]
Petri Nets

![Petri Net Diagram]

- Place p_0 with tokens
- Transition t_1 with input 2
- Transition t_2 with input 1
- Transition t_3 with input 1
- Transition t_4 with input 1
Petri Nets

\[
\begin{align*}
\text{\(t_3\)} & \quad \text{\(1\)} \\
\text{\(p_1\)} & \quad \text{\(2\)} \\
\text{\(t_1\)} & \quad \text{\(1\)} \\
\text{\(p_0\)} & \quad \text{\(1\)} \\
\text{\(t_2\)} & \quad \text{\(1\)} \\
\text{\(p_2\)} & \quad \text{\(1\)} \\
\text{\(t_4\)} & \quad \text{\(1\)}
\end{align*}
\]
Introducing timing

Two possibilities
Introducing timing

Two possibilities

1. transitions have ages \(\Rightarrow\) Time Petri Nets ['70s]
Introducing timing

Two possibilities

1. transitions have ages \implies Time Petri Nets ['70s]
2. tokens have ages \implies Timed Petri Nets ['90s]
Introducing timing

Two possibilities

1. transitions have ages \implies Time Petri Nets ['70s]
2. tokens have ages \implies Timed Petri Nets ['90s]

Time Petri Nets

Transitions carry constraints in terms of intervals.
Introducing timing

Two possibilities

1. transitions have ages \implies Time Petri Nets ['70s]
2. tokens have ages \implies Timed Petri Nets ['90s]

Time Petri Nets

Transitions carry constraints in terms of intervals.

- upper bounds are invariants (urgency)
Introducing timing

Two possibilities

1. transitions have ages \(\Rightarrow\) Time Petri Nets ['70s]
2. tokens have ages \(\Rightarrow\) Timed Petri Nets ['90s]

Time Petri Nets

Transitions carry constraints in terms of intervals.

- upper bounds are invariants (urgency)
- transition \(t\) is reset when \(t\) is newly activated after firing
Plan

Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics

Summary

Message Sequence Charts with Timing Constraints (TC-MSCs)

Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints

Timed Channel Systems

Time(d) Petri Nets

Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Time Petri Net (TPN)
Time Petri Net (TPN)

\[\begin{align*}
&\text{Time Petri Net (TPN)} \\
&\begin{array}{c}
\node (p0) at (0,0) [circle, draw] {p_0} \\
\node (p1) at (-3,-2) [circle, draw] {p_1} \\
\node (p2) at (3,-2) [circle, draw] {p_2} \\
\node (t1) at (-2,-4) [rectangle, draw] {t_1} \\
\node (t2) at (2,-4) [rectangle, draw] {t_2} \\
\node (t3) at (-6,-6) [rectangle, draw] {t_3} \\
\node (t4) at (6,-6) [rectangle, draw] {t_4}
\end{array}
\end{align*} \]
Time Petri Net (TPN)

\[t_1: [0, 1], t_2: [0, \infty), t_3: [1, 1], t_4: [0, \infty) \]
Time Petri Net (TPN)

\[p_0 \rightarrow p_1 \stackrel{[0, \infty)}{\longrightarrow} t_2 \stackrel{[0, \infty)}{\longrightarrow} p_2 \]

\[p_1 \rightarrow t_1 \stackrel{[1, 1]}{\longrightarrow} t_3 \]

\[p_2 \rightarrow t_4 \]
Time Petri Net (TPN)

\[
\begin{align*}
\text{p}_0 & & (0, \infty) \rightarrow t_4 \\
\text{p}_1 & & t_3 \rightarrow 0, [1, 1] \\
& & \downarrow \\
\text{t}_1 & & 0, [1, 1] \rightarrow \text{p}_0 \\
& & \downarrow \\
\text{p}_0 & & 0, [0, \infty) \rightarrow \text{t}_2 \\
& & \downarrow \\
\text{t}_2 & & 0, [0, \infty) \rightarrow \text{p}_2 \\
& & \downarrow \\
\text{p}_2 & & \text{t}_4 \rightarrow (0, \infty) \\
\end{align*}
\]
Time Petri Net (TPN)

\begin{itemize}
 \item t_3 \hspace{1cm} $[1, 1]$ \hspace{1cm} p_1
 \item t_1 \hspace{1cm} $[1, 1]$ \hspace{1cm} t_2 \hspace{1cm} $[0, \infty)$ \hspace{1cm} p_0
 \item t_4 \hspace{1cm} $[0, \infty)$ \hspace{1cm} p_2
\end{itemize}
Time Petri Net (TPN)
Time Petri Net (TPN)
Time Petri Net (TPN)
Time Petri Net (TPN)
The set \(\text{Int} \) of intervals contains \([a, b], (a, b], [a, b), (a, b), [a, \infty), (a, \infty)\) where \(a, b \in \mathbb{N}\).
Notation:

- The set Int of intervals contains $[a, b]$, (a, b), $[a, b)$, (a, b), $[a, \infty)$, (a, ∞) where $a, b \in \mathbb{N}$.

- Given a set P, let $\text{Bag}(P)$ be the set of mappings $m : P \rightarrow \mathbb{N}$ with finite support, i.e., such that $\sum_{p \in P} m(p) \in \mathbb{N}$.

Time Petri Net (TPN)
Time Petri Net (TPN)

Notation:

- The set Int of intervals contains $[a, b]$, $(a, b]$, $[a, b)$, (a, b), $[a, \infty)$, (a, ∞) where $a, b \in \mathbb{N}$.
- Given a set P, let $Bag(P)$ be the set of mappings $m : P \rightarrow \mathbb{N}$ with finite support, i.e., such that $\sum_{p \in P} m(p) \in \mathbb{N}$.

Definition: Time Petri Net
Time Petri Net (TPN)

Notation:
- The set Int of intervals contains $[a, b]$, $(a, b]$, $[a, b)$, (a, b), $[a, \infty)$, (a, ∞) where $a, b \in \mathbb{N}$.
- Given a set P, let $\text{Bag}(P)$ be the set of mappings $m : P \rightarrow \mathbb{N}$ with finite support, i.e., such that $\sum_{p \in P} m(p) \in \mathbb{N}$.

Definition: Time Petri Net

A time Petri net (TPN) is a tuple $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ where:
- P is a finite set of places
Notation:

- The set Int of intervals contains $[a, b]$, $(a, b]$, $[a, b)$, (a, b), $[a, \infty)$, (a, ∞) where $a, b \in \mathbb{N}$.
- Given a set P, let $\text{Bag}(P)$ be the set of mappings $m : P \rightarrow \mathbb{N}$ with finite support, i.e., such that $\sum_{p \in P} m(p) \in \mathbb{N}$.

Definition: Time Petri Net

A time Petri net (TPN) is a tuple $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ where:
- P is a finite set of places
- T is a finite set of transitions such that $P \cap T = \emptyset$
Time Petri Net (TPN)

Notation:
- The set Int of intervals contains $[a, b]$, $(a, b]$, $[a, b)$, (a, b), $[a, \infty)$, (a, ∞) where $a, b \in \mathbb{N}$.
- Given a set P, let $\text{Bag}(P)$ be the set of mappings $m : P \rightarrow \mathbb{N}$ with finite support, i.e., such that $\sum_{p \in P} m(p) \in \mathbb{N}$.

Definition: Time Petri Net

A *time Petri net* (TPN) is a tuple $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ where:
- P is a finite set of *places*
- T is a finite set of *transitions* such that $P \cap T = \emptyset$
- $\text{Pre} : T \rightarrow \text{Bag}(P)$
Notation:

- The set Int of intervals contains $[a, b]$, $(a, b]$, $[a, b)$, (a, b), $[a, \infty)$, (a, ∞) where $a, b \in \mathbb{N}$.
- Given a set P, let $Bag(P)$ be the set of mappings $m : P \rightarrow \mathbb{N}$ with finite support, i.e., such that $\sum_{p \in P} m(p) \in \mathbb{N}$.

Definition: Time Petri Net

A *time Petri net* (TPN) is a tuple $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ where:

- P is a finite set of *places*
- T is a finite set of *transitions* such that $P \cap T = \emptyset$
- $Pre : T \rightarrow Bag(P)$
- $Post : T \rightarrow Bag(P)$
Time Petri Net (TPN)

Notation:

- The set Int of intervals contains $[a, b]$, $(a, b]$, $[a, b)$, (a, b), $[a, \infty)$, (a, ∞) where $a, b \in \mathbb{N}$.

- Given a set P, let $\text{Bag}(P)$ be the set of mappings $m : P \rightarrow \mathbb{N}$ with finite support, i.e., such that $\sum_{p \in P} m(p) \in \mathbb{N}$.

Definition: Time Petri Net

A time Petri net (TPN) is a tuple $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ where:

- P is a finite set of places
- T is a finite set of transitions such that $P \cap T = \emptyset$
- $\text{Pre} : T \rightarrow \text{Bag}(P)$
- $\text{Post} : T \rightarrow \text{Bag}(P)$
- $\varphi : T \rightarrow \text{Int}$
Definition: Time Petri Net

A time Petri net (TPN) is a tuple $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ where:

- P is a finite set of places
- T is a finite set of transitions such that $P \cap T = \emptyset$
- $Pre : T \rightarrow Bag(P)$
- $Post : T \rightarrow Bag(P)$
- $\varphi : T \rightarrow Int$
- $m_0 \in Bag(P)$ is the initial marking
Time Petri Net (TPN)

\[p_0 \]

\[[0, \infty) \]

\[t_4 \]

\[[1, 1] \]

\[t_3 \]

\[[1, 1] \]

\[p_1 \]

\[t_1 \]

\[[1, 1] \]

\[p_2 \]

\[t_2 \]

\[[0, \infty) \]

\[t_1 \]

\[1 \]

\[1 \]

\[2 \]

\[1 \]

\[1 \]

\[1 \]

\[1 \]
Time Petri Net (TPN)

Example: $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$

- $P = \{p_0, p_1, p_2\}$
- $T = \{t_1, \ldots, t_4\}$
Time Petri Net (TPN)

Example: $\mathcal{N} = (P, T, \text{Pre, Post, } \varphi, m_0)$

- $P = \{p_0, p_1, p_2\}$ $T = \{t_1, \ldots, t_4\}$
- $\text{Pre}(t_1)(p_0) = 1$ $\text{Post}(t_1)(p_1) = 2$ $\text{Post}(t_3)(p_i) = 0$ for $i \in \{0, 1, 2\}$
Example: $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$

- $P = \{p_0, p_1, p_2\}$
- $T = \{t_1, \ldots, t_4\}$
- $\text{Pre}(t_1)(p_0) = 1$
- $\text{Post}(t_1)(p_1) = 2$
- $\text{Post}(t_3)(p_i) = 0$ for $i \in \{0, 1, 2\}$
- $\varphi(t_1) = [1, 1]$
Time Petri Net (TPN)

Example: $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$

- $P = \{p_0, p_1, p_2\}$, $T = \{t_1, \ldots, t_4\}$
- $\text{Pre}(t_1)(p_0) = 1$, $\text{Post}(t_1)(p_1) = 2$, $\text{Post}(t_3)(p_i) = 0$ for $i \in \{0, 1, 2\}$
- $\varphi(t_1) = [1, 1]$
- $m_0(p_0) = 1$, $m_0(p_1) = m_0(p_2) = 0$
Time Petri Net (TPN)
Let $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \phi, m_0)$ be a TPN.
Time Petri Net (TPN)

Let $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ be a TPN.

Notation:

For $m, m' \in \text{Bag}(P)$, we write $m \leq m'$ if $m(p) \leq m'(p)$ for all $p \in P$.
Time Petri Net (TPN)
Let $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ be a TPN.

Notation:
For $m, m' \in Bag(P)$, we write $m \leq m'$ if $m(p) \leq m'(p)$ for all $p \in P$.

Definition: active transitions
Let $m \in Bag(P)$. A transition $t \in T$ is active in m if $Pre(t) \leq m$.
Time Petri Net (TPN)
Let $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ be a TPN.

Notation:
For $m, m' \in Bag(P)$, we write $m \leq m'$ if $m(p) \leq m'(p)$ for all $p \in P$.

Definition: active transitions
Let $m \in Bag(P)$. A transition $t \in T$ is active in m if $Pre(t) \leq m$.
The set of transitions that are active in m is denoted by $Active(m)$.
Time Petri Net (TPN)

Let $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ be a TPN.

Notation:

For $m, m' \in \text{Bag}(P)$, we write $m \leq m'$ if $m(p) \leq m'(p)$ for all $p \in P$.

Definition: active transitions

Let $m \in \text{Bag}(P)$. A transition $t \in T$ is active in m if $\text{Pre}(t) \leq m$.

The set of transitions that are active in m is denoted by $\text{Active}(m)$.

Definition: configuration
Time Petri Net (TPN)

Let $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ be a TPN.

Notation:

For $m, m' \in \text{Bag}(P)$, we write $m \leq m'$ if $m(p) \leq m'(p)$ for all $p \in P$.

Definition: active transitions

Let $m \in \text{Bag}(P)$. A transition $t \in T$ is active in m if $\text{Pre}(t) \leq m$.

The set of transitions that are active in m is denoted by $\text{Active}(m)$.

Definition: configuration

A configuration of \mathcal{N} is a pair (m, ν) where:
Time Petri Net (TPN)

Let $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ be a TPN.

Notation:

For $m, m' \in Bag(P)$, we write $m \leq m'$ if $m(p) \leq m'(p)$ for all $p \in P$.

Definition: active transitions

Let $m \in Bag(P)$. A transition $t \in T$ is **active** in m if $Pre(t) \leq m$.

The set of transitions that are active in m is denoted by $Active(m)$.

Definition: configuration

A **configuration** of \mathcal{N} is a pair (m, ν) where:

- $m \in Bag(P)$
Time Petri Net (TPN)
Let $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ be a TPN.

Notation:
For $m, m' \in Bag(P)$, we write $m \leq m'$ if $m(p) \leq m'(p)$ for all $p \in P$.

Definition: active transitions
Let $m \in Bag(P)$. A transition $t \in T$ is active in m if $Pre(t) \preceq m$. The set of transitions that are active in m is denoted by $Active(m)$.

Definition: configuration
A configuration of \mathcal{N} is a pair (m, ν) where:
- $m \in Bag(P)$
- $\nu : Active(m) \to \mathbb{R}_{\geq 0}$
- $\nu(t) \in \varphi(t)^\downarrow$ for all $t \in Active(m)$
 (where $\varphi(t)^\downarrow$ is the downward closure of interval $\varphi(t)$)
Time Petri Net (TPN)

Let $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ be a TPN.

Notation:

For $m, m' \in \text{Bag}(P)$, we write $m \leq m'$ if $m(p) \leq m'(p)$ for all $p \in P$.

Definition: active transitions

Let $m \in \text{Bag}(P)$. A transition $t \in T$ is active in m if $\text{Pre}(t) \leq m$.

The set of transitions that are active in m is denoted by $\text{Active}(m)$.

Definition: configuration

A configuration of \mathcal{N} is a pair (m, ν) where:

- $m \in \text{Bag}(P)$
- $\nu : \text{Active}(m) \rightarrow \mathbb{R}_{\geq 0}$
- $\nu(t) \in \varphi(t)^\downarrow$ for all $t \in \text{Active}(m)$
 (where $\varphi(t)^\downarrow$ is the downward closure of interval $\varphi(t)$)

The set of configurations of \mathcal{N} is denoted by $\text{Conf}_\mathcal{N}$.
Time Petri Net (TPN)
Let $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ be a TPN.

Notation:
For $m, m' \in Bag(P)$, we write $m \leq m'$ if $m(p) \leq m'(p)$ for all $p \in P$.

Definition: active transitions
Let $m \in Bag(P)$. A transition $t \in T$ is active in m if $\text{Pre}(t) \leq m$.
The set of transitions that are active in m is denoted by $\text{Active}(m)$.

Definition: configuration
A configuration of \mathcal{N} is a pair (m, ν) where:
- $m \in Bag(P)$
- $\nu : \text{Active}(m) \to \mathbb{R}_{\geq 0}$
- $\nu(t) \in \varphi(t)\downarrow$ for all $t \in \text{Active}(m)$
 (where $\varphi(t)\downarrow$ is the downward closure of interval $\varphi(t)$)

The set of configurations of \mathcal{N} is denoted by $\text{Conf}_\mathcal{N}$.

Intuitively, every $t \in \text{Active}(m)$ is a clock with valuation $\nu(t)$ satisfying invariant $\varphi(t)\downarrow$.
Time Petri Net (TPN)

Let \(\mathcal{N} = (P, T, Pre, Post, \varphi, m_0) \) be a TPN.

Notation:

For \(m, m' \in Bag(P) \), we write \(m \leq m' \) if \(m(p) \leq m'(p) \) for all \(p \in P \).

Definition: active transitions

Let \(m \in Bag(P) \). A transition \(t \in T \) is active in \(m \) if \(Pre(t) \leq m \).

The set of transitions that are active in \(m \) is denoted by \(\text{Active}(m) \).

Definition: configuration

A configuration of \(\mathcal{N} \) is a pair \((m, \nu) \) where:

- \(m \in Bag(P) \)
- \(\nu : \text{Active}(m) \to \mathbb{R}_{\geq 0} \)
- \(\nu(t) \in \varphi(t)^\downarrow \) for all \(t \in \text{Active}(m) \)
 (where \(\varphi(t)^\downarrow \) is the downward closure of interval \(\varphi(t) \))

The set of configurations of \(\mathcal{N} \) is denoted by \(\text{Conf}_\mathcal{N} \).

Intuitively, every \(t \in \text{Active}(m) \) is a clock with valuation \(\nu(t) \) satisfying invariant \(\varphi(t)^\downarrow \), and \(t \) can be fired if \(\nu(t) \in \varphi(t) \).
Time Petri Net (TPN)
Time Petri Net (TPN)

Example: configuration \((m, \nu)\)

- \(m(p_0) = m(p_1) = 1\)
- \(m(p_2) = 0\)
Example: configuration \((m, \nu)\)

- \(m(p_0) = m(p_1) = 1\) \(m(p_2) = 0\)
- \(\text{Active}(m) = \{t_1, t_2, t_3\}\)
Time Petri Net (TPN)

Example: configuration \((m, \nu)\)

- \(m(p_0) = m(p_1) = 1\) \(m(p_2) = 0\)
- \(Active(m) = \{t_1, t_2, t_3\}\)
- \(\nu(t_1) = \nu(t_2) = 1\) \(\nu(t_3) = 0\)
Example: configuration \((m, \nu)\)

- \(m(p_0) = m(p_1) = 1\) \(m(p_2) = 0\)
- \(\text{Active}(m) = \{t_1, t_2, t_3\}\)
- \(\nu(t_1) = \nu(t_2) = 1\) \(\nu(t_3) = 0\)

Transitions \(t_1, t_2\) are fireable, while \(t_3, t_4\) are not fireable.
Time Petri Net (TPN)

Let $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ be a TPN.
Time Petri Net (TPN)

Let $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ be a TPN.

Notation: (resets)

For $m \in Bag(P)$ and $t \in Active(m)$, let

$$Reset(m, t) := \{ t' \in Active(m - Pre(t) + Post(t)) \mid t = t' \text{ or } t' \not\in Active(m - Pre(t)) \}$$

be the set of transitions that are reset when firing t in m.
Time Petri Net (TPN)

Let $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ be a TPN.

Notation: (resets)

For $m \in \text{Bag}(P)$ and $t \in \text{Active}(m)$, let

$$\text{Reset}(m, t) := \{ t' \in \text{Active}(m - \text{Pre}(t) + \text{Post}(t)) \mid t = t' \text{ or } t' \not\in \text{Active}(m - \text{Pre}(t)) \}$$

be the set of transitions that are reset when firing t in m.

Example:

$$\text{Reset}(m, t_1) =$$
Time Petri Net (TPN)

Let $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ be a TPN.

Notation: (resets)

For $m \in Bag(P)$ and $t \in Active(m)$, let

$$Reset(m, t) := \{ t' \in Active(m - Pre(t) + Post(t)) \mid t = t' \text{ or } t' \notin Active(m - Pre(t)) \}$$

be the set of transitions that are reset when firing t in m.

Example:

$$Reset(m, t_1) = \{ t_1, t_2 \}$$
Time Petri Net (TPN)

Let $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ be a TPN.

Notation: (resets)

For $m \in \text{Bag}(P)$ and $t \in \text{Active}(m)$, let

$$\text{Reset}(m, t) := \{ t' \in \text{Active}(m - \text{Pre}(t) + \text{Post}(t)) \mid t = t' \text{ or } t' \not\in \text{Active}(m - \text{Pre}(t)) \}$$

be the set of transitions that are reset when firing t in m.

Example:

$\text{Reset}(m, t_1) = \{ t_1, t_2 \}$
Let $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ be a TPN.

Notation: (resets)

For $m \in \text{Bag}(P)$ and $t \in \text{Active}(m)$, let

$$\text{Reset}(m, t) := \{ t' \in \text{Active}(m - \text{Pre}(t) + \text{Post}(t)) \mid t = t' \text{ or } t' \not\in \text{Active}(m - \text{Pre}(t)) \}$$

be the set of transitions that are reset when firing t in m.

Example:

$$\text{Reset}(m, t_1) = \{ t_1, t_2 \}$$

$$\text{Example:}$$

$$\text{Reset}(m, t_1) = \{ t_1 \}$$
Definition: semantics of $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$

Let the infinite transition system $TS_{\mathcal{N}} = (Conf_{\mathcal{N}}, q_0, \rightarrow)$ be given as follows:
Definition: semantics of $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$

Let the infinite transition system $TS_{\mathcal{N}} = (\text{Conf}_{\mathcal{N}}, q_0, \rightarrow)$ be given as follows:

- $q_0 = (m_0, \nu_0)$ where $\nu_0(t) = 0$ for all $t \in \text{Active}(m_0)$
Definition: semantics of $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$

Let the infinite transition system $TS_\mathcal{N} = (\text{Conf}_\mathcal{N}, q_0, \rightarrow)$ be given as follows:

\bullet $q_0 = (m_0, \nu_0)$ where $\nu_0(t) = 0$ for all $t \in \text{Active}(m_0)$

(note that $q_0 \in \text{Conf}_\mathcal{N}$)
Time Petri Net (TPN)

Definition: semantics of $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$

Let the infinite transition system $TS_N = (Conf_N, q_0, \rightarrow)$ be given as follows:

- $q_0 = (m_0, \nu_0)$ where $\nu_0(t) = 0$ for all $t \in \text{Active}(m_0)$
 (note that $q_0 \in Conf_N$)

- (delay transition) for all $d \in \mathbb{R}_{>0}$:

 $$(m, \nu) \xrightarrow{d} (m, \nu + d)$$
Definition: semantics of $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$

Let the infinite transition system $TS_\mathcal{N} = (\text{Conf}_\mathcal{N}, q_0, \rightarrow)$ be given as follows:

- $q_0 = (m_0, \nu_0)$ where $\nu_0(t) = 0$ for all $t \in \text{Active}(m_0)$
 (note that $q_0 \in \text{Conf}_\mathcal{N}$)

- (delay transition) for all $d \in \mathbb{R}_{>0}$:
 $$(m, \nu) \xrightarrow{d} (m, \nu + d)$$

- (discrete transition) for all $t \in \text{Active}(m)$ such that $\nu(t) \in \varphi(t)$:
 $$(m, \nu) \xrightarrow{t} (m - \text{Pre}(t) + \text{Post}(t), \nu')$$
Time Petri Net (TPN)

Definition: semantics of \(\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0) \)

Let the infinite transition system \(TS_\mathcal{N} = (\text{Conf}_\mathcal{N}, q_0, \rightarrow) \) be given as follows:

- \(q_0 = (m_0, \nu_0) \) where \(\nu_0(t) = 0 \) for all \(t \in \text{Active}(m_0) \)
 (note that \(q_0 \in \text{Conf}_\mathcal{N} \))

- (delay transition) for all \(d \in \mathbb{R}_{>0} \):
 \[
 (m, \nu) \xrightarrow{d} (m, \nu + d)
 \]

- (discrete transition) for all \(t \in \text{Active}(m) \) such that \(\nu(t) \in \varphi(t) \):
 \[
 (m, \nu) \xrightarrow{t} (m - \text{Pre}(t) + \text{Post}(t), \nu')
 \]

where, for all \(t' \in \text{Active}(m - \text{Pre}(t) + \text{Post}(t)) \):
Definition: semantics of $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$

Let the infinite transition system $TS_\mathcal{N} = (Conf_\mathcal{N}, q_0, \rightarrow)$ be given as follows:

- $q_0 = (m_0, \nu_0)$ where $\nu_0(t) = 0$ for all $t \in Active(m_0)$ (note that $q_0 \in Conf_\mathcal{N}$)
- (delay transition) for all $d \in \mathbb{R}_{>0}$:
 $$ (m, \nu) \xrightarrow{d} (m, \nu + d) $$

- (discrete transition) for all $t \in Active(m)$ such that $\nu(t) \in \varphi(t)$:
 $$ (m, \nu) \xrightarrow{t} (m - Pre(t) + Post(t), \nu') $$

 where, for all $t' \in Active(m - Pre(t) + Post(t))$:
 $$ \nu'(t') = \begin{cases} 0 & \text{if } t' \in Reset(m, t) \\ \nu(t') & \text{otherwise} \end{cases} $$
Time Petri Net (TPN)

Definition: semantics of $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$

Let the infinite transition system $TS_{\mathcal{N}} = (Conf_{\mathcal{N}}, q_0, \rightarrow)$ be given as follows:

- $q_0 = (m_0, \nu_0)$ where $\nu_0(t) = 0$ for all $t \in \text{Active}(m_0)$
 (note that $q_0 \in Conf_{\mathcal{N}}$)
- (delay transition) for all $d \in \mathbb{R}_{>0}$:
 $$(m, \nu) \xrightarrow{d} (m, \nu + d)$$
- (discrete transition) for all $t \in \text{Active}(m)$ such that $\nu(t) \in \varphi(t)$:
 $$(m, \nu) \xrightarrow{t} (m - \text{Pre}(t) + \text{Post}(t), \nu')$$

where, for all $t' \in \text{Active}(m - \text{Pre}(t) + \text{Post}(t))$:

$$\nu'(t') = \begin{cases}
0 & \text{if } t' \in \text{Reset}(m, t) \\
\nu(t') & \text{otherwise (in that case: } t' \in \text{Active}(m))
\end{cases}$$
Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics
Summary

Message Sequence Charts with Timing Constraints (TC-MSCs)

Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints
Timed Channel Systems

3 Time(d) Petri Nets

Time Petri Nets (TPN)

Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Decision problems for TPN

Definition: Reachability for TPN

Input: TPN \(\mathcal{N} = (P, T, Pre, Post, \varphi, m_0) \) and \(m \in Bag(P) \)
Decision problems for TPN

Definition: Reachability for TPN

INPUT: TPN $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0)$ and $m \in \text{Bag}(P)$

QUESTION: Is there $\nu : \text{Active}(m) \rightarrow \mathbb{R}_{\geq 0}$ such that (m, ν) is reachable in $TS_\mathcal{N}$ from q_0?
Decision problems for TPN

Definition: Reachability for TPN

Input: TPN $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ and $m \in Bag(P)$

Question: Is there $\nu : Active(m) \rightarrow \mathbb{R}_{\geq 0}$ such that (m, ν) is reachable in $TS_{\mathcal{N}}$ from q_0?

Definition: Coverability for TPN

Input: TPN $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ and $m \in Bag(P)$

Question: Are there $m' \geq m$ and $\nu' : Active(m') \rightarrow \mathbb{R}_{\geq 0}$ such that (m', ν') is reachable in $TS_{\mathcal{N}}$ from q_0?
Decision problems for TPN

Definition: Reachability for TPN

Input:\[\text{TPN } \mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0) \text{ and } m \in \text{Bag}(P)\]

Question: Is there \(\nu : \text{Active}(m) \rightarrow \mathbb{R}_{\geq 0}\) such that \((m, \nu)\) is reachable in \(TS_{\mathcal{N}}\) from \(q_0\)?

Definition: Coverability for TPN

Input:\[\text{TPN } \mathcal{N} = (P, T, \text{Pre}, \text{Post}, \varphi, m_0) \text{ and } m \in \text{Bag}(P)\]

Question: Are there \(m' \geq m\) and \(\nu' : \text{Active}(m') \rightarrow \mathbb{R}_{\geq 0}\) such that \((m', \nu')\) is reachable in \(TS_{\mathcal{N}}\) from \(q_0\)?

Theorem:

For Petri nets (i.e., TPN with trivial timing constraints),...
Decision problems for TPN

Definition: Reachability for TPN

Input: TPN $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ and $m \in Bag(P)$

Question: Is there $\nu : Active(m) \rightarrow \mathbb{R}_{\geq 0}$ such that (m, ν) is reachable in $TS_\mathcal{N}$ from q_0?

Definition: Coverability for TPN

Input: TPN $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ and $m \in Bag(P)$

Question: Are there $m' \geq m$ and $\nu' : Active(m') \rightarrow \mathbb{R}_{\geq 0}$ such that (m', ν') is reachable in $TS_\mathcal{N}$ from q_0?

Theorem:

For Petri nets (i.e., TPN with trivial timing constraints),

- reachability is decidable [Mayr 1981].
Decision problems for TPN

Definition: Reachability for TPN

INPUT: TPN $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ and $m \in Bag(P)$

QUESTION: Is there $\nu : Active(m) \rightarrow \mathbb{R}_{\geq 0}$ such that (m, ν) is reachable in $TS_{\mathcal{N}}$ from q_0?

Definition: Coverability for TPN

INPUT: TPN $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ and $m \in Bag(P)$

QUESTION: Are there $m' \geq m$ and $\nu' : Active(m') \rightarrow \mathbb{R}_{\geq 0}$ such that (m', ν') is reachable in $TS_{\mathcal{N}}$ from q_0?

Theorem:

For Petri nets (i.e., TPN with trivial timing constraints),

- reachability is decidable [Mayr 1981].
- coverability is in EXPSPACE [Rackoff 1978].
Decision problems for TPN

Definition: Reachability for TPN

INPUT: TPN $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ and $m \in Bag(P)$

QUESTION: Is there $\nu : Active(m) \rightarrow \mathbb{R}_{\geq 0}$ such that (m, ν) is reachable in $TS_{\mathcal{N}}$ from q_0?

Definition: Coverability for TPN

INPUT: TPN $\mathcal{N} = (P, T, Pre, Post, \varphi, m_0)$ and $m \in Bag(P)$

QUESTION: Are there $m' \geq m$ and $\nu' : Active(m') \rightarrow \mathbb{R}_{\geq 0}$ such that (m', ν') is reachable in $TS_{\mathcal{N}}$ from q_0?

Theorem:
For Petri nets (i.e., TPN with trivial timing constraints),
- reachability is decidable [Mayr 1981].
- coverability is in EXPSPACE [Rackoff 1978].
Both problems are EXPSPACE-hard [Lipton et al. 1976].
Decision problems for TPN

Theorem: [Jones et al. 1977]
Reachability for TPN is undecidable.
Theorem: [Jones et al. 1977]
Reachability for TPN is undecidable.

Proof: (Idea)
The proof is by reduction from emptiness of 2-counter machines (2-CM).
Theorem: [Jones et al. 1977] Reachability for TPN is undecidable.

Proof: (Idea)
The proof is by reduction from emptiness of 2-counter machines (2-CM). We construct a TPN \mathcal{N} such that the 2-CM executes an instruction of the form $\ell :$ accept iff a configuration with a token in place ℓ is reachable in $TS_{\mathcal{N}}$.
Proof of undecidability

A 2-CM is a sequence of labeled instructions:

1 : instr_1
2 : instr_2

 \vdots

n : instr_n

Each instruction is one of the following (where $c \in \{c_1, c_2\}$):

- $\ell : accept$
- $\ell : c++$
- $\ell : \text{if } c == 0 \text{ goto } \ell' \text{ else } c --$
Proof of undecidability

A 2-CM is a sequence of labeled instructions:

\[\begin{align*}
1 & : instr_1 \\
2 & : instr_2 \\
& \vdots \\
n & : instr_n
\end{align*}\]

Each instruction is one of the following (where \(c \in \{c_1, c_2\}\)):

- \(\ell : accept\)
- \(\ell : c++\)
- \(\ell : if \ c == 0 \ goto \ \ell' \ \text{else} \ c --\)

The semantics of an instruction and of a program are as expected:

- \(c++\) increments counter \(c\) by 1
- \(c--\) decrements counter \(c\) by 1
Proof of undecidability

Idea:
We introduce places c_1 and c_2 to simulate counters:
The number of tokens in c_i is the current counter value of c_i.
Proof of undecidability

Idea:
We introduce places c_1 and c_2 to simulate counters:
The number of tokens in c_i is the current counter value of c_i.

$\ell : c_1 ++$

```
\begin{tikzpicture}
    \node[place] (l) {$\ell$};
    \node[transition] (t) [right of=l] {$t^{\ell}$};
    \node[place] (l1) [right of=t] {$\ell + 1$};
    \node[place] (c1) [below of=l1] {$c_1$};
    \draw (l) -- (t) node [midway, above] {$[0, 0]$};
    \draw (t) -- (l1); \draw (t) -- (c1);
\end{tikzpicture}
```
Proof of undecidability

\[\ell : \text{if } c_1 == 0 \text{ goto } \ell' \text{ else } c_1 \rightarrow \]

\[
\begin{array}{c}
\ell \\
\downarrow \\
t^{=0} \\
[1,1] \\
\ell'
\end{array}
\quad
\begin{array}{c}
c_1 \\
\downarrow \\
t^{=0} \\
[0,0] \\
\ell + 1
\end{array}
\]
Proof of undecidability

\[\ell : \text{if } c_1 == 0 \text{ goto } \ell' \text{ else } c_1 \-- \]

When going into \(\ell \), both transitions are reset (or non-active).
Proof of undecidability

\[\ell : \text{if } c_1 == 0 \text{ goto } \ell' \text{ else } c_1 -- \]

- When going into \(\ell \), both transitions are reset (or non-active).
- Due to urgency, \(t^{\ell}_{--} \) must fire if there is token in \(c_1 \).
Proof of undecidability

\[\ell : \text{if } c_1 == 0 \text{ goto } \ell' \text{ else } c_1 -- \]

- When going into \(\ell \), both transitions are reset (or non-active).
- Due to urgency, \(t_{\ell--;} \) must fire if there is token in \(c_1 \).
- Only if there is no token in \(c_1 \), \(t_{\ell=0} \) can fire.
Decision problems for TPN

Corollary:

Coverability for TPN is undecidable.
Decision problems for TPN

Corollary:
Coverability for TPN is undecidable.

Proof:
Follows directly from the previous proof:
Place \(\ell \) cannot contain more than one token.
Plan

Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics

Summary

Message Sequence Charts with Timing Constraints (TC-MSCs)

Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints

Timed Channel Systems

Time(d) Petri Nets

Time Petri Nets (TPN)
Decision problems for TPN

Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Timed Petri Net (TdPN)

![Timed Petri Net Diagram]

- **Places**: p_0, p_1, p_2
- **Transition**: t_1, t_2, t_3
- **Time Intervals**:
 - t_1: $[0, 0]$
 - t_2: $[0, 0]$
 - t_3: $[0, 2]$
 - p_0: $[0, 1]$
 - p_1: $[0, 0]$
 - p_2: $[0, 0]$
 - $(1, 2)$
Timed Petri Net (TdPN)

\[
\begin{align*}
\text{p}_0 & \quad \{0,1\} \quad \text{p}_0 \\
\text{p}_1 & \quad \{0,0\} \quad \text{t}_1 \\
\text{p}_2 & \quad \{0,0\} \quad \text{t}_2 \\
\text{p}_3 & \quad \{0,2\} \quad \text{t}_3
\end{align*}
\]
Timed Petri Net (TdPN)
Timed Petri Net (TdPN)
Timed Petri Net (TdPN)
Timed Petri Net (TdPN)

\[
\begin{align*}
(p_0, 0) & \xrightarrow{1} (p_0, 1) \xrightarrow{t_1} (p_0, 0) + (p_1, 0) \xrightarrow{t_1} (p_0, 0) + (p_1, 0) + (p_1, 0) \\
2 \rightarrow (p_0, 2) + (p_1, 2) + (p_1, 2) & \xrightarrow{t_2} (p_0, 0) + (p_1, 2) + (p_1, 2) + (p_2, 0) \\
3 \rightarrow (p_0, 0) + (p_1, 2) & \xrightarrow{1} (p_0, 1) + (p_1, 3)
\end{align*}
\]
Timed Petri Net (TdPN)

Goal:

- Reachability for TdPN is undecidable.
Timed Petri Net (TdPN)

Goal:
- Reachability for TdPN is undecidable.
- Coverability for TdPN is decidable.
Timed Petri Net (TdPN)

Goal:
- Reachability for TdPN is undecidable.
- Coverability for TdPN is decidable.

Definition: Timed Petri Net
Timed Petri Net (TdPN)

Goal:
- Reachability for TdPN is undecidable.
- Coverability for TdPN is decidable.

Definition: Timed Petri Net

A *timed Petri net* (TdPN) is a tuple $\mathcal{N} = (P, T, Pre, Post, m_0)$ where:
- P is a finite set of *places*
Timed Petri Net (TdPN)

Goal:
- Reachability for TdPN is undecidable.
- Coverability for TdPN is decidable.

Definition: Timed Petri Net

A timed Petri net (TdPN) is a tuple $\mathcal{N} = (P, T, Pre, Post, m_0)$ where:
- P is a finite set of places
- T is a finite set of transitions such that $P \cap T = \emptyset$
Timed Petri Net (TdPN)

Goal:
- Reachability for TdPN is undecidable.
- Coverability for TdPN is decidable.

Definition: Timed Petri Net
A timed Petri net (TdPN) is a tuple $\mathcal{N} = (P, T, Pre, Post, m_0)$ where:
- P is a finite set of places
- T is a finite set of transitions such that $P \cap T = \emptyset$
- $Pre : T \rightarrow Bag(P \times \text{Int})$
Timed Petri Net (TdPN)

Goal:
- Reachability for TdPN is undecidable.
- Coverability for TdPN is decidable.

Definition: Timed Petri Net

A timed Petri net (TdPN) is a tuple \(\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0) \) where:

- \(P \) is a finite set of places
- \(T \) is a finite set of transitions such that \(P \cap T = \emptyset \)
- \(\text{Pre} : T \rightarrow \text{Bag}(P \times \text{Int}) \)
- \(\text{Post} : T \rightarrow \text{Bag}(P \times \text{Int}) \)
Timed Petri Net (TdPN)

Goal:
- Reachability for TdPN is undecidable.
- Coverability for TdPN is decidable.

Definition: Timed Petri Net

A timed Petri net (TdPN) is a tuple $\mathcal{N} = (P, T, Pre, Post, m_0)$ where:
- P is a finite set of places
- T is a finite set of transitions such that $P \cap T = \emptyset$
- $Pre : T \rightarrow Bag(P \times \text{Int})$
- $Post : T \rightarrow Bag(P \times \text{Int})$
- $m_0 \in Bag(P)$ is the initial marking
Timed Petri Net (TdPN)
Timed Petri Net (TdPN)

Example: $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$

- $P = \{p_0, p_1, p_2\}$
- $T = \{t_1, t_2, t_3\}$
Timed Petri Net (TdPN)

Example: \(\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0) \)

- \(P = \{p_0, p_1, p_2\} \quad T = \{t_1, t_2, t_3\} \)
- \(\text{Pre}(t_1) = (p_0, [0, 1]) \quad \text{Post}(t_1) = (p_1, [0, 0]) \)
Example: $\mathcal{N} = (P, T, Pre, Post, m_0)$

- $P = \{p_0, p_1, p_2\}$ \hspace{1cm} $T = \{t_1, t_2, t_3\}$
- $Pre(t_1) = (p_0, [0, 1])$ \hspace{1cm} $Post(t_1) = (p_1, [0, 0])$
- $m_0(p_0) = 1$ \hspace{1cm} $m_0(p_1) = m_0(p_2) = 0$
Example: $\mathcal{N} = (P, T, Pre, Post, m_0)$

- $P = \{p_0, p_1, p_2\}$
 $T = \{t_1, t_2, t_3\}$
- $Pre(t_1) = (p_0, [0, 1])$
 $Post(t_1) = (p_1, [0, 0])$
- $m_0(p_0) = 1$
 $m_0(p_1) = m_0(p_2) = 0$

(we start with one token in p_0 with age 0)
Timed Petri Net (TdPN)

Definition: configurations of $\mathcal{N} = (P, T, Pre, Post, m_0)$

The set of configurations of \mathcal{N} is $Conf_{\mathcal{N}} := Bag(P \times \mathbb{R}_{\geq 0})$.
Timed Petri Net (TdPN)

Definition: configurations of $\mathcal{N} = (P, T, Pre, Post, m_0)$

The set of configurations of \mathcal{N} is $Conf_{\mathcal{N}} := Bag(P \times \mathbb{R}_{\geq 0})$.

Example:

$(p_0, 2.4) + (p_1, 4) + (p_1, 4) + (p_1, 3) + (p_2, 1.2) + (p_2, 5)$
Timed Petri Net (TdPN)

Definition: configurations of $\mathcal{N} = (P, T, \text{Pre, Post, } m_0)$

The set of configurations of \mathcal{N} is $\text{Conf}_\mathcal{N} := \text{Bag}(P \times \mathbb{R}_{\geq 0})$.

Example:

$$(p_0, 2.4) + (p_1, 4) + (p_1, 4) + (p_1, 3) + (p_2, 1.2) + (p_2, 5)$$

Example: (satisfaction of precondition)

$$(p_0, 2.4) + (p_1, 4) + (p_1, 3) \models (p_0, [2, 3]) + (p_1, [4, 4]) + (p_1, [0, \infty])$$
Timed Petri Net (TdPN)

Definition: configurations of $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$

The set of configurations of \mathcal{N} is $\text{Conf}_\mathcal{N} := \text{Bag}(P \times \mathbb{R}_{\geq 0})$.

Example:

$$(p_0, 2.4) + (p_1, 4) + (p_1, 4) + (p_1, 3) + (p_2, 1.2) + (p_2, 5)$$

Example: (satisfaction of precondition)

$$(p_0, 2.4) + (p_1, 4) + (p_1, 3) \models (p_0, [2, 3]) + (p_1, [4, 4]) + (p_1, [0, \infty])$$

Notation:

For $\gamma \in \text{Conf}_\mathcal{N}$ and $\alpha \in \text{Bag}(P \times \text{Int})$, we write

$$\gamma \models \alpha$$
Timed Petri Net (TdPN)

Definition: configurations of \(\mathcal{N} = (P, T, Pre, Post, m_0) \)

The set of configurations of \(\mathcal{N} \) is \(Conf_{\mathcal{N}} := Bag(P \times \mathbb{R}_{\geq 0}) \).

Example:

\[(p_0, 2.4) + (p_1, 4) + (p_1, 4) + (p_1, 3) + (p_2, 1.2) + (p_2, 5) \]

Example: (satisfaction of precondition)

\[(p_0, 2.4) + (p_1, 4) + (p_1, 3) \models (p_0, [2, 3]) + (p_1, [4, 4]) + (p_1, [0, \infty]) \]

Notation:

For \(\gamma \in Conf_{\mathcal{N}} \) and \(\alpha \in Bag(P \times \text{Int}) \), we write

\[\gamma \models \alpha \]

if there is \(\beta \in Bag(P \times \mathbb{R}_{\geq 0} \times \text{Int}) \) such that
Timed Petri Net (TdPN)

Definition: configurations of $\mathcal{N} = (P, T, Pre, Post, m_0)$

The set of configurations of \mathcal{N} is $Conf_\mathcal{N} := Bag(P \times \mathbb{R}_{\geq 0})$.

Example:

$$(p_0, 2.4) + (p_1, 4) + (p_1, 4) + (p_1, 3) + (p_2, 1.2) + (p_2, 5)$$

Example: (satisfaction of precondition)

$$(p_0, 2.4) + (p_1, 4) + (p_1, 3) \models (p_0, [2, 3]) + (p_1, [4, 4]) + (p_1, [0, \infty])$$

Notation:

For $\gamma \in Conf_\mathcal{N}$ and $\alpha \in Bag(P \times Int)$, we write

$$\gamma \models \alpha$$

if there is $\beta \in Bag(P \times \mathbb{R}_{\geq 0} \times Int)$ such that

$\Pi_{1,2}(\beta) = \gamma$
Timed Petri Net (TdPN)

Definition: configurations of $\mathcal{N} = (P, T, Pre, Post, m_0)$

The set of configurations of \mathcal{N} is $Conf_{\mathcal{N}} := Bag(P \times \mathbb{R}_{\geq 0})$.

Example:

$$(p_0, 2.4) + (p_1, 4) + (p_1, 4) + (p_1, 3) + (p_2, 1.2) + (p_2, 5)$$

Example: (satisfaction of precondition)

$$(p_0, 2.4) + (p_1, 4) + (p_1, 3) \models (p_0, [2, 3]) + (p_1, [4, 4]) + (p_1, [0, \infty])$$

Notation:

For $\gamma \in Conf_{\mathcal{N}}$ and $\alpha \in Bag(P \times \text{Int})$, we write

$$\gamma \models \alpha$$

if there is $\beta \in Bag(P \times \mathbb{R}_{\geq 0} \times \text{Int})$ such that

- $\Pi_{1,2}(\beta) = \gamma$ and $\Pi_{1,3}(\beta) = \alpha$ where $[\Pi_{1,2}(\beta)](p, x) = \sum_{I \in \text{Int}} \beta(p, x, I)$
Timed Petri Net (TdPN)

Definition: configurations of $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$

The set of configurations of \mathcal{N} is $\text{Conf}_\mathcal{N} := \text{Bag}(P \times \mathbb{R}_{\geq 0})$.

Example:

$(p_0, 2.4) + (p_1, 4) + (p_1, 4) + (p_1, 3) + (p_2, 1.2) + (p_2, 5)$

Example: (satisfaction of precondition)

$(p_0, 2.4) + (p_1, 4) + (p_1, 3) \models (p_0, [2, 3]) + (p_1, [4, 4]) + (p_1, [0, \infty])$

Notation:

For $\gamma \in \text{Conf}_\mathcal{N}$ and $\alpha \in \text{Bag}(P \times \text{Int})$, we write

$$\gamma \models \alpha$$

if there is $\beta \in \text{Bag}(P \times \mathbb{R}_{\geq 0} \times \text{Int})$ such that

- $\Pi_{1,2}(\beta) = \gamma$ and $\Pi_{1,3}(\beta) = \alpha$ where $[\Pi_{1,2}(\beta)](p, x) = \sum_{I \in \text{Int}} \beta(p, x, I)$
- for all $(p, x, I) \in \text{dom}(\beta)$: $x \in I$
Timed Petri Net (TdPN)

Definition: semantics of $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$

Let the infinite transition system $TS_\mathcal{N} = (\text{Conf}_\mathcal{N}, q_0, \rightarrow)$ be given as follows:
Timed Petri Net (TdPN)

Definition: semantics of $\mathcal{N} = (P, T, Pre, Post, m_0)$

Let the infinite transition system $TS_\mathcal{N} = (Conf_\mathcal{N}, q_0, \rightarrow)$ be given as follows:

$q_0 = \sum_{p \in P} m_0(p) \cdot (p, 0)$
Timed Petri Net (TdPN)

Definition: semantics of \(\mathcal{N} = (P, T, Pre, Post, m_0) \)

Let the infinite transition system \(TS_\mathcal{N} = (Conf_\mathcal{N}, q_0, \rightarrow) \) be given as follows:

- \(q_0 = \sum_{p \in P} m_0(p) \cdot (p, 0) \)
- (delay transition) for all \(d \in \mathbb{R}_{>0} \):
 \[
 \gamma \xrightarrow{d} \gamma + d
 \]
- (discrete transition) for all \(t \in T \)
 \[
 \gamma \xrightarrow{t} \gamma'
 \]
Timed Petri Net (TdPN)

Definition: semantics of $\mathcal{N} = (P, T, Pre, Post, m_0)$

Let the infinite transition system $TS_{\mathcal{N}} = (Conf_{\mathcal{N}}, q_0, \rightarrow)$ be given as follows:

- $q_0 = \sum_{p \in P} m_0(p) \cdot (p, 0)$
- (delay transition) for all $d \in \mathbb{R}_{>0}$:
 \[
 \gamma \xrightarrow{d} \gamma + d
 \]
- (discrete transition) for all $t \in T$
 \[
 \gamma \xrightarrow{t} \gamma'
 \]

if there are $\gamma^-, \gamma^+ \in Bag(P \times \mathbb{R}_{\geq 0})$ with $\gamma^- \leq \gamma$ such that
Timed Petri Net (TdPN)

Definition: semantics of $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$

Let the infinite transition system $TS_{\mathcal{N}} = (\text{Conf}_{\mathcal{N}}, q_0, \rightarrow)$ be given as follows:

- $q_0 = \sum_{p \in P} m_0(p) \cdot (p, 0)$
- (delay transition) for all $d \in \mathbb{R}_{>0}$:
 $$\gamma \xrightarrow{d} \gamma + d$$
- (discrete transition) for all $t \in T$
 $$\gamma \xrightarrow{t} \gamma'$$

if there are $\gamma^-, \gamma^+ \in \text{Bag}(P \times \mathbb{R}_{\geq 0})$ with $\gamma^- \leq \gamma$ such that
- $\gamma' = \gamma - \gamma^- + \gamma^+$
Timed Petri Net (TdPN)

Definition: semantics of $\mathcal{N} = (P, T, Pre, Post, m_0)$

Let the infinite transition system $TS_\mathcal{N} = (Conf_\mathcal{N}, q_0, \rightarrow)$ be given as follows:

- $q_0 = \sum_{p \in P} m_0(p) \cdot (p, 0)$
- (delay transition) for all $d \in \mathbb{R}_{>0}$:
 $\gamma \xrightarrow{d} \gamma + d$
- (discrete transition) for all $t \in T$
 $\gamma \xrightarrow{t} \gamma'$
 if there are $\gamma^-, \gamma^+ \in Bag(P \times \mathbb{R}_{\geq 0})$ with $\gamma^- \leq \gamma$ such that
 - $\gamma' = \gamma - \gamma^- + \gamma^+$
 - $\gamma^- \models Pre(t)$
Timed Petri Net (TdPN)

Definition: semantics of \(\mathcal{N} = (P, T, Pre, Post, m_0) \)

Let the infinite transition system \(TS_{\mathcal{N}} = (Conf_{\mathcal{N}}, q_0, \rightarrow) \) be given as follows:

- \(q_0 = \sum_{p \in P} m_0(p) \cdot (p, 0) \)
- (delay transition) for all \(d \in \mathbb{R}_{>0} \):
 \[
 \gamma \xrightarrow{d} \gamma + d
 \]
- (discrete transition) for all \(t \in T \)
 \[
 \gamma \xrightarrow{t} \gamma'
 \]
 if there are \(\gamma^-, \gamma^+ \in Bag(P \times \mathbb{R}_{\geq 0}) \) with \(\gamma^- \leq \gamma \) such that
 - \(\gamma' = \gamma - \gamma^- + \gamma^+ \)
 - \(\gamma^- \models Pre(t) \)
 - \(\gamma^+ \models Post(t) \)
Timed Petri Net (TdPN)

Example:

\[
(p_0, 0) \xrightarrow{1} (p_0, 1) \xrightarrow{t_1} (p_0, 0) + (p_1, 0) \xrightarrow{t_1} (p_0, 0) + (p_1, 0) + (p_1, 0) \\
\xrightarrow{2} (p_0, 2) + (p_1, 2) + (p_1, 2) \xrightarrow{t_2} (p_0, 0) + (p_1, 2) + (p_1, 2) + (p_2, 0) \\
\xrightarrow{t_2} (p_0, 0) + (p_1, 2) \xrightarrow{1} (p_0, 1) + (p_1, 3)
\]
Plan

Distributed Timed Automata

- The Model
- Existential Semantics and Region Abstraction
- Universal Semantics and Undecidability
- Reactive Semantics

Summary

Message Sequence Charts with Timing Constraints (TC-MSCs)

- Message Sequence Charts (MSCs)
- Message Sequence Charts with Timing Constraints (TC-MSCs)
- Realizability of Single TC-MSCs
- Message Sequence Graphs with Timing Constraints

Timed Channel Systems

Time(d) Petri Nets

- Time Petri Nets (TPN)
- Decision problems for TPN
- Timed Petri Nets (TdPN)

- Decision problems for TdPN
- Decidability of Coverability for TdPN
- Expressiveness (credits to Serge Haddad)
Definition: Reachability for TdPN

Input: TdPN $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$ and $\gamma \in Bag(P \times \mathbb{Q}_{\geq 0})$
Decision problems for TPN

Definition: Reachability for TdPN

Input: TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\gamma \in \text{Bag}(P \times \mathbb{Q}_{\geq 0})$

Question: Is γ reachable in $TS_\mathcal{N}$ from q_0?
Decision problems for TPN

Definition: Reachability for TdPN

Input: TdPN $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$ and $\gamma \in \text{Bag}(P \times \mathbb{Q}_{\geq 0})$

Question: Is γ reachable in $TS_\mathcal{N}$ from q_0?

Notation:

For $\Gamma \subseteq \text{Conf}_\mathcal{N}$, let:

$$\Gamma^\uparrow := \{\gamma' \in \text{Conf}_\mathcal{N} \mid \text{there is } \gamma \in \Gamma \text{ such that } \gamma \leq \gamma'\}$$

Here, $\gamma \leq \gamma'$ if $\gamma(p, x) \leq \gamma'(p, x)$ for all $(p, x) \in P \times \mathbb{R}_{\geq 0}$.
Decision problems for TPN

Definition: Reachability for TdPN

Input: TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\gamma \in Bag(P \times \mathbb{Q}_{\geq 0})$

Question: Is γ reachable in $TS_\mathcal{N}$ from q_0?

Notation:

For $\Gamma \subseteq Conf_\mathcal{N}$, let:

$$\Gamma^\uparrow := \{ \gamma' \in Conf_\mathcal{N} \mid \text{there is } \gamma \in \Gamma \text{ such that } \gamma \leq \gamma' \}$$

Here, $\gamma \leq \gamma'$ if $\gamma(p, x) \leq \gamma'(p, x)$ for all $(p, x) \in P \times \mathbb{R}_{\geq 0}$.

Definition: Coverability for TdPN

Input: TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\gamma \in Bag(P \times \mathbb{Q}_{\geq 0})$
Definition: Reachability for TdPN

Input: TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\gamma \in Bag(P \times \mathbb{Q}_{\geq 0})$

Question: Is γ reachable in $TS_{\mathcal{N}}$ from q_0?

Notation:
For $\Gamma \subseteq Conf_{\mathcal{N}}$, let:

$$\Gamma^\uparrow := \{ \gamma' \in Conf_{\mathcal{N}} \mid \text{there is } \gamma \in \Gamma \text{ such that } \gamma \leq \gamma' \}$$

Here, $\gamma \leq \gamma'$ if $\gamma(p, x) \leq \gamma'(p, x)$ for all $(p, x) \in P \times \mathbb{R}_{\geq 0}$.

Definition: Coverability for TdPN

Input: TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\gamma \in Bag(P \times \mathbb{Q}_{\geq 0})$

Question: Is there a configuration in $\{\gamma\}^\uparrow$ that is reachable in $TS_{\mathcal{N}}$ from q_0?
Theorem: [Valero et al. 1999]
Reachability for TdPN is undecidable.
Theorem: [Valero et al. 1999]
Reachability for TdPN is undecidable.

Proof: (Idea)
The proof is by reduction from emptiness of 2-counter machines (2-CM).
Decision problems for TPN

Theorem: [Valero et al. 1999]

Reachability for TdPN is undecidable.

Proof: (Idea)

The proof is by reduction from emptiness of 2-counter machines (2-CM).

We construct a TdPN \mathcal{N} such that the 2-CM executes an instruction of the form $\ell : \text{accept when both counters are 0}$ iff configuration $(\ell, 0)$ (no tokens in c_1 and c_2) is reachable in $TS_{\mathcal{N}}$.
Proof of undecidability

A 2-CM is a sequence of labeled instructions:

\[1 : \text{instr}_1 \]
\[2 : \text{instr}_2 \]
\[\vdots \]
\[n : \text{instr}_n \]

Each instruction is one of the following (where \(c \in \{c_1, c_2\} \)):

- \(\ell : \text{accept} \)
- \(\ell : c++ \)
- \(\ell : \text{if } c == 0 \text{ goto } \ell' \text{ else } c -- \)

The semantics of an instruction and of a program are as expected:

- \(c++ \) increments counter \(c \) by 1
- \(c-- \) decrements counter \(c \) by 1
Proof of undecidability

Idea:
We introduce places c_1 and c_2 to simulate counters:
The number of tokens in c_i is the current counter value of c_i.
Proof of undecidability

Idea:
We introduce places c_1 and c_2 to simulate counters:
The number of tokens in c_i is the current counter value of c_i.

ℓ : c_1 ++

[Diagram of a Petri net with transitions and places labeled as follows:
- Initial place labeled ℓ with 0 tokens.
- Transition labeled $t^{ℓ++}$ with input 0, 0 and output 0, 0.
- Final place labeled $ℓ + 1$ with 0 tokens.
- Additional transition labeled 0, 0 from $t^{ℓ++}$ to c_1.]

Proof of undecidability

\[\ell : \text{if } c_1 == 0 \text{ goto } \ell' \text{ else } c_1 \leftarrow \]

\[
\begin{align*}
\ell & \xrightarrow{[1,1]} t_{\ell}^{=0} \xrightarrow{[0,0]} \ell' \\
& \xrightarrow{[0,0]} c_2 \\
& \xrightarrow{t_{\ell}^{\leq}} \ell' \\
& \xrightarrow{[0,0]} c_1 \\
& \xrightarrow{[0,0]} \ell + 1
\end{align*}
\]
Proof of undecidability

\[\ell : \text{if } c_1 == 0 \text{ goto } \ell' \text{ else } c_1 -- \]

- Invariant: All tokens are 0 after each transition.
Proof of undecidability

\(\ell : \text{if } c_1 == 0 \text{ goto } \ell' \text{ else } c_1 -- \)

- Invariant: All tokens are 0 after each transition.
- If there is token in \(c_1 \), then fire \(t_\ell^- \).
Proof of undecidability

$\ell : \text{if } c_1 == 0 \text{ goto } \ell' \text{ else } c_1 --$

- Invariant: All tokens are 0 after each transition.
- If there is token in c_1, then fire t^ℓ.
- If there is token in c_1 and t^ℓ is missed, all tokens in c_1 will be “dead”.
Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics

Summary

Message Sequence Charts with Timing Constraints (TC-MSCs)

Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints

Timed Channel Systems

Time(d) Petri Nets

Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN

Decidability of Coverability for TdPN
Expressiveness (credits to Serge Haddad)
Decidability of coverability for TdPN

Definition: Coverability for TdPN

Input: TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$
Definition: Coverability for TdPN

Input: TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\hat{\gamma} \in Bag(P \times Q_{\geq 0})$

Question: Is there a configuration in $\{\hat{\gamma}\}^\uparrow$ that is reachable in TS_N from q_0?
Decidability of coverability for TdPN

Definition: Coverability for TdPN

Input: TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\hat{\gamma} \in Bag(P \times Q_{\geq 0})$

Question: Is there a configuration in $\{\hat{\gamma}\}^\uparrow$ that is reachable in TS_N from q_0?

Theorem:

Coverability for TdPN is decidable.
Decidability of coverability for TdPN

Definition: Coverability for TdPN

Input: TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$

Question: Is there a configuration in $\{\hat{\gamma}\}^\uparrow$ that is reachable in $TS_\mathcal{N}$ from q_0?

Theorem:

Coverability for TdPN is decidable.

Proof: (Outline)

- Wlog., we assume that all ages in $\hat{\gamma}$ are integers (otherwise, change granularity).
Decidability of coverability for TdPN

Definition: Coverability for TdPN

Input: TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$

Question: Is there a configuration in $\{\hat{\gamma}\}^\uparrow$ that is reachable in $TS_\mathcal{N}$ from q_0?

Theorem:
Coverability for TdPN is decidable.

Proof: (Outline)

- Wlog., we assume that all ages in $\hat{\gamma}$ are integers (otherwise, change granularity).
- Classify configurations into infinitely many regions.
Decidability of coverability for TdPN

Definition: Coverability for TdPN

Input: TdPN \(\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0) \) and \(\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0}) \)

Question: Is there a configuration in \(\{\hat{\gamma}\}^{\uparrow} \) that is reachable in \(TS_\mathcal{N} \) from \(q_0 \)?

Theorem:

Coverability for TdPN is decidable.

Proof: (Outline)

- Wlog., we assume that all ages in \(\hat{\gamma} \) are integers (otherwise, change granularity).
- Classify configurations into infinitely many regions (like in timed automata, but infinite).
Decidability of coverability for TdPN

Definition: Coverability for TdPN

Input: TdPN $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$ and $\hat{\gamma} \in \text{Bag}(P \times \mathbb{Q}_{\geq 0})$

Question: Is there a configuration in $\{\hat{\gamma}\}^\uparrow$ that is reachable in $TS_{\mathcal{N}}$ from q_0?

Theorem:
Coverability for TdPN is decidable.

Proof: (Outline)

- Wlog., we assume that all ages in $\hat{\gamma}$ are integers (otherwise, change granularity).
- Classify configurations into infinitely many regions (like in timed automata, but infinite).
- Order regions wrt. well-quasi-ordering (wqo) \leq.
Decidability of coverability for TdPN

Definition: Coverability for TdPN

Input: TdPN $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$ and $\hat{\gamma} \in \text{Bag}(P \times \mathbb{Q}_{\geq 0})$

Question: Is there a configuration in $\{\hat{\gamma}\}^\uparrow$ that is reachable in $T\mathcal{S}_\mathcal{N}$ from q_0?

Theorem:

Coverability for TdPN is decidable.

Proof: (Outline)

- Wlog., we assume that all ages in $\hat{\gamma}$ are integers (otherwise, change granularity).
- Classify configurations into infinitely many regions (like in timed automata, but infinite).
- Order regions wrt. well-quasi-ordering (wqo) \leq.
- Iterate computation of $\text{pre}(\{\hat{\gamma}\}^\uparrow)$ until there are no new configurations (process terminates because \leq is wqo).
Decidability of coverability for TdPN

Definition: Coverability for TdPN

Input: TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$

Question: Is there a configuration in $\left\{ \hat{\gamma} \right\}^\uparrow$ that is reachable in $TS_{\mathcal{N}}$ from q_0?

Theorem:

Coverability for TdPN is decidable.

Proof: (Outline)

- Wlog., we assume that all ages in $\hat{\gamma}$ are integers (otherwise, change granularity).
- Classify configurations into infinitely many regions (like in timed automata, but infinite).
- Order regions wrt. well-quasi-ordering (wqo) \leq.
- Iterate computation of $pre(\left\{ \hat{\gamma} \right\}^\uparrow)$ until there are no new configurations (process terminates because \leq is wqo).
- Compare result with q_0.
Decidability of coverability for TdPN

We fix a TdPN $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$.
Decidability of coverability for TdPN
We fix a TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$. Let max be the maximal integer part occurring in \mathcal{N} or $\hat{\gamma}$.
Decidability of coverability for TdPN

We fix a TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$. Let max be the maximal integer part occurring in \mathcal{N} or $\hat{\gamma}$.

Idea:

- Instead of clocks, consider tokens \leadsto infinitely many.
Decidability of coverability for TdPN

We fix a TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$. Let max be the maximal integer part occurring in \mathcal{N} or $\hat{\gamma}$.

Idea:

- Instead of clocks, consider tokens \leadsto infinitely many.
- Keep only integer part and order them according to fractional part (as in timed automata – but now for infinitely many clocks).
Decidability of coverability for TdPN
We fix a TdPN $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$.
Let max be the maximal integer part occurring in \mathcal{N} or $\hat{\gamma}$.

Idea:
- Instead of clocks, consider tokens \rightsquigarrow infinitely many.
- Keep only integer part and order them according to fractional part (as in timed automata – but now for infinitely many clocks).

Example: ($\text{max} = 4$)

$$(p, 1) + (p, 2.8) + (q, 3) + (q, 0.8) + (q, 5.1) + (r, 1.5)$$
Decidability of coverability for TdPN

We fix a TdPN $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$ and $\hat{\gamma} \in \text{Bag}(P \times \mathbb{Q}_{\geq 0})$.
Let max be the maximal integer part occurring in \mathcal{N} or $\hat{\gamma}$.

Idea:

- Instead of clocks, consider tokens $\sim \sim$ infinitely many.
- Keep only integer part and order them according to fractional part (as in timed automata – but now for infinitely many clocks).

Example: ($\text{max} = 4$)

$$(p, 1) + (p, 2.8) + (q, 3) + (q, 0.8) + (q, 5.1) + (r, 1.5)$$

\Downarrow

$$(p, 1) + (q, 3) \quad (r, 1) \quad (p, 2) + (q, 0) \quad (q, \infty)$$
Decidability of coverability for TdPN

We fix a TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$.

Let max be the maximal integer part occurring in \mathcal{N} or $\hat{\gamma}$.

Idea:

- Instead of clocks, consider tokens \rightsquigarrow infinitely many.
- Keep only integer part and order them according to fractional part (as in timed automata – but now for infinitely many clocks).

Example: $(max = 4)$

$(p, 1) + (p, 2.8) + (q, 3) + (q, 0.8) + (q, 5.1) + (r, 1.5)$

\downarrow

$\underbrace{(p, 1) + (q, 3)}_{a_0}$ $\underbrace{(r, 1)}_{a_1}$ $\underbrace{(p, 2) + (q, 0)}_{a_2}$ $\underbrace{(q, \infty)}_{a_\infty}$
Decidability of coverability for TdPN
We fix a TdPN $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$ and $\hat{\gamma} \in \text{Bag}(P \times \mathbb{Q}_{\geq 0})$.
Let max be the maximal integer part occurring in \mathcal{N} or $\hat{\gamma}$.

Idea:

- Instead of clocks, consider tokens \rightsquigarrow infinitely many.
- Keep only integer part and order them according to fractional part (as in timed automata – but now for infinitely many many clocks).

Example: ($max = 4$)

$$(p, 1) + (p, 2.8) + (q, 3) + (q, 0.8) + (q, 5.1) + (r, 1.5)$$

$$\Downarrow$$

$$\underbrace{(p, 1) + (q, 3)}_{a_0} \quad \underbrace{(r, 1)}_{a_1} \quad \underbrace{(p, 2) + (q, 0)}_{a_2} \quad \underbrace{(q, \infty)}_{a_\infty}$$

Definition: region

A region is a sequence $\mathcal{R} = a_0a_1 \ldots a_na_\infty$ with $n \geq 0$ such that:
Decidability of coverability for TdPN

We fix a TdPN $\mathcal{N} = (P, T, Pre, Post, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$.

Let \max be the maximal integer part occurring in \mathcal{N} or $\hat{\gamma}$.

Idea:

- Instead of clocks, consider tokens \rightsquigarrow infinitely many.
- Keep only integer part and order them according to fractional part (as in timed automata – but now for infinitely many clocks).

Example: ($\max = 4$)

\[
(p, 1) + (p, 2.8) + (q, 3) + (q, 0.8) + (q, 5.1) + (r, 1.5) \downarrow
\]

\[
\left\{ (p, 1) + (q, 3) \right\}_{a_0} \quad \left\{ (r, 1) \right\}_{a_1} \quad \left\{ (p, 2) + (q, 0) \right\}_{a_2} \quad \left\{ (q, \infty) \right\}_{a_\infty}
\]

Definition: region

A region is a sequence $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ with $n \geq 0$ such that:

- $a_i \in Bag(P \times \{0, \ldots, \max\})$ for all $i \in \{0, \ldots, n\}$
Decidability of coverability for TdPN

We fix a TdPN $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$ and $\hat{\gamma} \in \text{Bag}(P \times \mathbb{Q}_{\geq 0})$. Let max be the maximal integer part occurring in \mathcal{N} or $\hat{\gamma}$.

Idea:

- Instead of clocks, consider tokens $\sim \infty$ infinitely many.
- Keep only integer part and order them according to fractional part (as in timed automata – but now for infinitely many clocks).

Example: ($\text{max} = 4$)

\[
(p, 1) + (p, 2.8) + (q, 3) + (q, 0.8) + (q, 5.1) + (r, 1.5) \\
\downarrow \\
(p, 1) + (q, 3) \quad (r, 1) \quad (p, 2) + (q, 0) \quad (q, \infty)
\]

Definition: region

A region is a sequence $\mathcal{R} = a_0a_1 \ldots a_na_\infty$ with $n \geq 0$ such that:

- $a_i \in \text{Bag}(P \times \{0, \ldots, \text{max}\})$ for all $i \in \{0, \ldots, n\}$
- $a_\infty \in \text{Bag}(P \times \{\infty\})$
Decidability of coverability for TdPN

We fix a TdPN $\mathcal{N} = (P, T, \text{Pre}, \text{Post}, m_0)$ and $\hat{\gamma} \in Bag(P \times \mathbb{Q}_{\geq 0})$. Let \max be the maximal integer part occurring in \mathcal{N} or $\hat{\gamma}$.

Idea:
- Instead of clocks, consider tokens \rightsquigarrow infinitely many.
- Keep only integer part and order them according to fractional part (as in timed automata – but now for infinitely many clocks).

Example: ($\max = 4$)

\[(p, 1) + (p, 2.8) + (q, 3) + (q, 0.8) + (q, 5.1) + (r, 1.5) \downarrow \]

\[(p, 1) + (q, 3) \quad (r, 1) \quad (p, 2) + (q, 0) \quad (q, \infty)\]

a_0 a_1 a_2 a_∞

Definition: region

A region is a sequence $\mathcal{R} = a_0a_1 \ldots a_na_\infty$ with $n \geq 0$ such that:
- $a_i \in Bag(P \times \{0, \ldots, \max\})$ for all $i \in \{0, \ldots, n\}$
- $a_\infty \in Bag(P \times \{\infty\})$
- $|a_i| > 0$ for all $i \in \{1, \ldots, n\}$
Decidability of coverability for TdPN

Example: \(\max = 4 \)

\[
\begin{aligned}
\varepsilon & \quad (p, 1) + (q, 3) + (r, 1.5) + (p, 2.8) + (q, 0.8) + (q, 5.1) \\
&\quad \underbrace{(p, 1) + (q, 3)}_{a_0} \quad \underbrace{(r, 1)}_{a_1} \quad \underbrace{(p, 2) + (q, 0)}_{a_2} \quad \underbrace{(q, \infty)}_{a_\infty}
\end{aligned}
\]
Decidability of coverability for TdPN

Example: \(\text{max} = 4 \)

\[
\begin{align*}
(p, 1) &+ (q, 3) + (r, 1.5) + (p, 2.8) + (q, 0.8) + (q, 5.1) \\
\end{align*}
\]

\[
\begin{align*}
\in &
\begin{align*}
(p, 1) &+ (q, 3) \\
(r, 1) &+ (p, 2) + (q, 0) \\
(q, \infty) &
\end{align*}
\end{align*}
\]

Notation for region \(R = a_0a_1\ldots a_na_\infty \):

Let \([R]\) be the set of all \(\gamma \in \text{Conf}_\mathcal{N} \) such that \(\exists \gamma_1, \ldots, \gamma_n, \gamma_\infty \in \text{Bag}(P \times \mathbb{R}_{\geq 0}) \):

\[
\gamma = a_0 + \gamma_1 + \ldots + \gamma_n + \gamma_\infty
\]
Decidability of coverability for TdPN

Example: \(max = 4 \)

\[
\begin{align*}
(p, 1) + (q, 3) + (r, 1.5) + (p, 2.8) + (q, 0.8) + (q, 5.1) \\
\leq (p, 1) + (q, 3) + (r, 1) + (p, 2) + (q, 0) + (q, \infty)
\end{align*}
\]

Notation for region \(R = a_0a_1 \ldots a_n a_\infty \):

Let \(\mathcal{R} \) be the set of all \(\gamma \in \text{Conf}_\mathcal{N} \) such that \(\exists \gamma_1, \ldots, \gamma_n, \gamma_\infty \in \text{Bag}(P \times \mathbb{R}_{\geq 0}) \):

- \(\gamma = a_0 + \gamma_1 + \ldots + \gamma_n + \gamma_\infty \)
- for all \(i \in \{1, \ldots, n\} \) and \((p, x) \leq \gamma_i \), we have \(0 < x - \lfloor x \rfloor \)
Decidability of coverability for TdPN

Example: (max = 4)

\[
\begin{align*}
(p, 1) + (q, 3) + (r, 1.5) + (p, 2.8) + (q, 0.8) + (q, 5.1) \\
\subset \begin{cases}
\gamma_0
\quad (p, 1) + (q, 3) \\
\gamma_1
\quad (r, 1) \\
\gamma_2
\quad (p, 2) + (q, 0) \\
\gamma_\infty
\quad (q, \infty)
\end{cases}
\end{align*}
\]

Notation for region \(R = a_0a_1 \ldots a_na_\infty \):

Let \([R]\) be the set of all \(\gamma \in Conf_N \) such that \(\exists \gamma_1, \ldots, \gamma_n, \gamma_\infty \in Bag(P \times \mathbb{R}_{\geq 0}) : \)

- \(\gamma = a_0 + \gamma_1 + \ldots + \gamma_n + \gamma_\infty \)
- for all \(i \in \{1, \ldots, n\} \) and \((p, x) \leq \gamma_i \), we have \(0 < x - \lfloor x \rfloor \)
- for all \(1 \leq i \leq n \) (let \(\lfloor x \rfloor = \infty \) if \(x > \text{max} \)): \(\text{(same integers)} \)

\[\lfloor \gamma_i \rfloor = a_i \quad \text{and} \quad \lfloor \gamma_\infty \rfloor = a_\infty \]
Decidability of coverability for TdPN

Example: \((max = 4)\)

\[
\begin{align*}
(p, 1) + (q, 3) + (r, 1.5) + (p, 2.8) + (q, 0.8) + (q, 5.1) \\
\in \left\{ \begin{array}{l}
(p, 1) + (q, 3) \\
(r, 1) \\
(p, 2) + (q, 0) \\
(q, \infty)
\end{array} \right\}
\end{align*}
\]

Notation for region \(\mathcal{R} = a_0 a_1 \ldots a_n a_\infty:\)

Let \([\mathcal{R}]\) be the set of all \(\gamma \in \text{Conf}_N\) such that \(\exists \gamma_1, \ldots, \gamma_n, \gamma_\infty \in \text{Bag}(P \times \mathbb{R}_{\geq 0}):\)

- \(\gamma = a_0 + \gamma_1 + \ldots + \gamma_n + \gamma_\infty\)
- for all \(i \in \{1, \ldots, n\}\) and \((p, x) \leq \gamma_i\), we have \(0 < x - \lfloor x \rfloor\)
- for all \(1 \leq i \leq n\) (let \(\lfloor x \rfloor = \infty\) if \(x > max\)):
 - \(\lfloor \gamma_i \rfloor = a_i\) and \(\lfloor \gamma_\infty \rfloor = a_\infty\)
- for all \(1 \leq i \leq n\) and \((p, x) + (q, y) \leq \gamma_i\):
 - (in each group, identical fractional parts)
 \(0 < x - \lfloor x \rfloor = y - \lfloor y \rfloor\)
Decidability of coverability for TdPN

Example: (\(max = 4\))

\[
\begin{align*}
(p, 1) + (q, 3) + (r, 1.5) &+ (p, 2.8) + (q, 0.8) + (q, 5.1) \\
\in &\quad (p, 1) + (q, 3) \quad (r, 1) \quad (p, 2) + (q, 0) \quad (q, \infty)
\end{align*}
\]

Notation for region \(\mathcal{R} = a_0 a_1 \ldots a_n a_\infty\):

Let \([\mathcal{R}]\) be the set of all \(\gamma \in \text{Conf}_N\) such that \(\exists \gamma_1, \ldots, \gamma_n, \gamma_\infty \in \text{Bag}(P \times \mathbb{R}_{\geq 0})\):

1. \(\gamma = a_0 + \gamma_1 + \ldots + \gamma_n + \gamma_\infty\)
2. for all \(i \in \{1, \ldots, n\}\) and \((p, x) \leq \gamma_i\), we have \(0 < x - \lfloor x \rfloor\)
3. for all \(1 \leq i \leq n\) (let \(\lfloor x \rfloor = \infty\) if \(x > \text{max}\)): (same integers)
 \[
 [\gamma_i] = a_i \quad \text{and} \quad [\gamma_\infty] = a_\infty
 \]
4. for all \(1 \leq i \leq n\) and \((p, x) + (q, y) \leq \gamma_i\): (in each group, identical fractional parts)
 \[
 0 < x - \lfloor x \rfloor = y - \lfloor y \rfloor
 \]
5. for all \(1 \leq i < j \leq n\), \((p, x) \leq \gamma_i\), and \((q, y) \leq \gamma_j\): (fractional parts are ordered)
 \[
 x - \lfloor x \rfloor < y - \lfloor y \rfloor
 \]
wqo on regions

Definition: wqo

A well-quasi-ordering (wqo) over a set X is a reflexive and transitive binary relation $\preceq \subseteq X \times X$.
A well-quasi-ordering (wqo) over a set X is a reflexive and transitive binary relation $\preceq \subseteq X \times X$ such that, for every infinite sequence x_1, x_2, x_3, \ldots, there are $i < j$ with $x_i \preceq x_j$.
wqo on regions

Definition: wqo

A well-quasi-ordering (wqo) over a set X is a reflexive and transitive binary relation $\preceq \subseteq X \times X$ such that, for every infinite sequence x_1, x_2, x_3, \ldots, there are $i < j$ with $x_i \preceq x_j$.

Definition: wqo on regions

For two regions \mathcal{R} and \mathcal{R}', we let $\mathcal{R} \preceq \mathcal{R}'$ if
Definition: wqo

A well-quasi-ordering (wqo) over a set X is a reflexive and transitive binary relation $\leq \subseteq X \times X$ such that, for every infinite sequence x_1, x_2, x_3, \ldots, there are $i < j$ with $x_i \leq x_j$.

Definition: wqo on regions

For two regions \mathcal{R} and \mathcal{R}', we let $\mathcal{R} \preceq \mathcal{R}'$ if

$$[\mathcal{R}']^\uparrow \subseteq [\mathcal{R}]^\uparrow$$
wqo on regions

Definition: wqo

A well-quasi-ordering (wqo) over a set \(X \) is a reflexive and transitive binary relation \(\preceq \subseteq X \times X \) such that, for every infinite sequence \(x_1, x_2, x_3, \ldots \), there are \(i < j \) with \(x_i \preceq x_j \).

Definition: wqo on regions

For two regions \(R \) and \(R' \), we let \(R \preceq R' \) if

\[
[R'][\uparrow] \subseteq [R][\uparrow]
\]

Lemma:

Let \(R = a_0 a_1 \ldots a_n a_\infty \) and \(R' = b_0 b_1 \ldots b_m b_\infty \). We have \(R \preceq R' \) iff
Definition: wqo

A well-quasi-ordering (wqo) over a set X is a reflexive and transitive binary relation $\preceq \subseteq X \times X$ such that, for every infinite sequence x_1, x_2, x_3, \ldots, there are $i < j$ with $x_i \preceq x_j$.

Definition: wqo on regions

For two regions R and R', we let $R \preceq R'$ if

$$[R']^\uparrow \subseteq [R]^\uparrow$$

Lemma:

Let $R = a_0a_1 \ldots a_na_\infty$ and $R' = b_0b_1 \ldots b_mb_\infty$. We have $R \preceq R'$ iff there is $f : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\}$ strictly increasing.
wqo on regions

Definition: wqo

A well-quasi-ordering (wqo) over a set \(X \) is a reflexive and transitive binary relation \(\preceq \subseteq X \times X \) such that, for every infinite sequence \(x_1, x_2, x_3, \ldots \), there are \(i < j \) with \(x_i \preceq x_j \).

Definition: wqo on regions

For two regions \(R \) and \(R' \), we let \(R \preceq R' \) if

\[
[R']^\uparrow \subseteq [R]^\uparrow
\]

Lemma:

Let \(R = a_0a_1 \ldots a_na_\infty \) and \(R' = b_0b_1 \ldots b_mb_\infty \). We have \(R \preceq R' \) iff there is \(f : \{1, \ldots, n\} \rightarrow \{1, \ldots, m\} \) strictly increasing (which implies \(n \leq m \)) such that:
wqo on regions

Definition: wqo

A well-quasi-ordering (wqo) over a set X is a reflexive and transitive binary relation $\preceq \subseteq X \times X$ such that, for every infinite sequence x_1, x_2, x_3, \ldots, there are $i < j$ with $x_i \preceq x_j$.

Definition: wqo on regions

For two regions \mathcal{R} and \mathcal{R}', we let $\mathcal{R} \preceq \mathcal{R}'$ if

$$[\mathcal{R}']^\uparrow \subseteq [\mathcal{R}]^\uparrow$$

Lemma:

Let $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ and $\mathcal{R}' = b_0 b_1 \ldots b_m b_\infty$. We have $\mathcal{R} \preceq \mathcal{R}'$ iff there is $f : \{1, \ldots, n\} \to \{1, \ldots, m\}$ strictly increasing (which implies $n \leq m$) such that:

- $a_0 \leq b_0$
wqo on regions

Definition: wqo

A well-quasi-ordering (wqo) over a set X is a reflexive and transitive binary relation $\preceq \subseteq X \times X$ such that, for every infinite sequence x_1, x_2, x_3, \ldots, there are $i < j$ with $x_i \preceq x_j$.

Definition: wqo on regions

For two regions \mathcal{R} and \mathcal{R}', we let $\mathcal{R} \preceq \mathcal{R}'$ if

$$[\mathcal{R}']^\uparrow \subseteq [\mathcal{R}]^\uparrow$$

Lemma:

Let $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ and $\mathcal{R}' = b_0 b_1 \ldots b_m b_\infty$. We have $\mathcal{R} \preceq \mathcal{R}'$ iff there is $f : \{1, \ldots, n\} \to \{1, \ldots, m\}$ strictly increasing (which implies $n \leq m$) such that:

- $a_0 \leq b_0$
- $a_\infty \leq b_\infty$
wqo on regions

Definition: wqo

A well-quasi-ordering (wqo) over a set X is a reflexive and transitive binary relation $\preceq \subseteq X \times X$ such that, for every infinite sequence x_1, x_2, x_3, \ldots, there are $i < j$ with $x_i \preceq x_j$.

Definition: wqo on regions

For two regions \mathcal{R} and \mathcal{R}', we let $\mathcal{R} \preceq \mathcal{R}'$ if

$[\mathcal{R}']^\uparrow \subseteq [\mathcal{R}]^\uparrow$

Lemma:

Let $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ and $\mathcal{R}' = b_0 b_1 \ldots b_m b_\infty$. We have $\mathcal{R} \preceq \mathcal{R}'$ iff there is $f : \{1, \ldots, n\} \to \{1, \ldots, m\}$ strictly increasing (which implies $n \leq m$) such that:

- $a_0 \leq b_0$
- $a_\infty \leq b_\infty$
- $a_i \leq b_{f(i)}$ for all $i \in \{1, \ldots, n\}$
Definition: wqo

A well-quasi-ordering (wqo) over a set X is a reflexive and transitive binary relation $\preceq \subseteq X \times X$ such that, for every infinite sequence x_1, x_2, x_3, \ldots, there are $i < j$ with $x_i \preceq x_j$.

Definition: wqo on regions

For two regions \mathcal{R} and \mathcal{R}', we let $\mathcal{R} \preceq \mathcal{R}'$ if $[\mathcal{R}']^{\uparrow} \subseteq [\mathcal{R}]^{\uparrow}$.

Lemma:

Let $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ and $\mathcal{R}' = b_0 b_1 \ldots b_m b_\infty$. We have $\mathcal{R} \preceq \mathcal{R}'$ iff there is $f : \{1, \ldots, n\} \to \{1, \ldots, m\}$ strictly increasing (which implies $n \leq m$) such that:

- $a_0 \leq b_0$
- $a_\infty \leq b_\infty$
- $a_i \leq b_{f(i)}$ for all $i \in \{1, \ldots, n\}$

Proof: (Exercise)

If \mathcal{R}' contains more tokens, its upward closure is smaller.
Example: \(f(1) = 1 \)

\[
\begin{align*}
\emptyset & \quad (q, 3) \quad (r, \infty) \quad \preceq \quad (p, 1) \quad (r, 0) + (q, 3) \quad (p, 2) \quad (r, \infty) \\
\quad a_0 & \quad \quad a_1 \quad \quad a_{\infty} \quad \quad b_0 \quad \quad b_1 \quad \quad b_2 \quad \quad b_{\infty}
\end{align*}
\]
wqo on regions

Example: \(f(1) = 1 \)

\[
\begin{array}{cccccc}
\emptyset & (q, 3) & (r, \infty) & \preceq & (p, 1) & (r, 0) + (q, 3) \\
\downarrow a_0 & \downarrow a_1 & \downarrow a_\infty & \downarrow b_0 & \downarrow b_1 & \downarrow b_2 & \downarrow b_\infty \\
\end{array}
\]

Lemma:
The relation \(\preceq \) is a wqo.
wqo on regions

Example: $f(1) = 1$

<table>
<thead>
<tr>
<th>\emptyset</th>
<th>$(q, 3)$</th>
<th>(r, ∞)</th>
<th>\leq</th>
<th>$(p, 1)$</th>
<th>$(r, 0) + (q, 3)$</th>
<th>$(p, 2)$</th>
<th>(r, ∞)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>a_1</td>
<td>a_∞</td>
<td></td>
<td>b_0</td>
<td>b_1</td>
<td>b_2</td>
<td>b_∞</td>
</tr>
</tbody>
</table>

Lemma:
The relation \leq is a wqo.

Proof:
Follows from previous lemma and Higman’s Lemma:
The subsequence relation over strings over a finite alphabet is a wqo.
Decidability of coverability for TdPN

Definition:

Let $\gamma \in Conf_N$ and $t \in T$.
Decidability of coverability for TdPN

Definition:

Let $\gamma \in Conf_N$ and $t \in T$.

$\triangleright t\text{-pre}(\gamma) := \{\gamma' \mid \gamma' \xrightarrow{t} \gamma\}$
Decidability of coverability for TdPN

Definition:

Let $\gamma \in \text{Conf}_N$ and $t \in T$.

- $t\text{-pre}(\gamma) := \{ \gamma' | \gamma' \xrightarrow{t} \gamma \}$

- $delay\text{-pre}(\gamma) := \{ \gamma' | \gamma' \xrightarrow{d} \gamma \text{ for some } d > 0 \text{ such that } \mathcal{R}(\gamma') \neq \mathcal{R}(\gamma) \text{ and } \mathcal{R}(\gamma' + d') \in \{\mathcal{R}(\gamma'), \mathcal{R}(\gamma)\} \text{ for all } d' \in [0, d) \}$
Decidability of coverability for TdPN

Definition:

Let $\gamma \in Conf_N$ and $t \in T$.

- $\triangledown \ t$-pre(γ) := $\{ \gamma' \mid \gamma' \xrightarrow{t} \gamma \}$
- $\triangledown \ delay$-pre(γ) := $\{ \gamma' \mid \gamma' \xrightarrow{d} \gamma$ for some $d > 0$ such that $R(\gamma') \neq R(\gamma)$ and $R(\gamma' + d') \in \{ R(\gamma'), R(\gamma) \}$ for all $d' \in [0, d) \}$
- $\triangledown \ pre$(γ) = $\triangledown \ delay$-pre(γ) $\cup \bigcup_{t \in T} \ triangledown \ t$-pre($\gamma$)
Decidability of coverability for TdPN

Definition:

Let $\gamma \in \text{Conf}_N$ and $t \in T$.

- $t\text{-pre}(\gamma) := \{\gamma' | \gamma' \xrightarrow{t} \gamma\}$

- $\text{delay-pre}(\gamma) := \{\gamma' | \gamma' \xrightarrow{d} \gamma \text{ for some } d > 0 \text{ such that } R(\gamma') \neq R(\gamma) \text{ and } R(\gamma' + d') \in \{R(\gamma'), R(\gamma)\} \text{ for all } d' \in [0, d)\}$

- $\text{pre}(\gamma) = \text{delay-pre}(\gamma) \cup \bigcup_{t \in T} t\text{-pre}(\gamma)$

Here, $R(\gamma)$ is the unique region \mathcal{R}' with $\gamma \in \mathcal{R}'$.
Decidability of coverability for TdPN

Definition:

Let $\gamma \in \text{Conf}_N$ and $t \in T$.

- $t\text{-pre}(\gamma) := \{\gamma' \mid \gamma' \xrightarrow{t} \gamma\}$
- $\text{delay-pre}(\gamma) := \{\gamma' \mid \gamma' \xrightarrow{d} \gamma \text{ for some } d > 0 \text{ such that } R(\gamma') \neq R(\gamma) \text{ and } R(\gamma' + d') \in \{R(\gamma'), R(\gamma)\} \text{ for all } d' \in [0, d)\}$
- $\text{pre}(\gamma) = \text{delay-pre}(\gamma) \cup \bigcup_{t \in T} t\text{-pre}(\gamma)$

Here, $R(\gamma)$ is the unique region R' with $\gamma \in R'$.

Lemma:

Let R be a region and $t \in T$.

- $\text{delay-pre}(\lceil R \rceil) = \lceil R_1 \rceil \cup \ldots \cup \lceil R_k \rceil$ for some effectively computable k and R_i
Decidability of coverability for TdPN

Definition:

Let $\gamma \in \text{Conf}_N$ and $t \in T$.

- $\triangledown t$-pre$(\gamma) := \{\gamma' \mid \gamma' \xrightarrow{t} \gamma\}$
- \triangledown delay-pre$(\gamma) := \{\gamma' \mid \gamma' \xrightarrow{d} \gamma \text{ for some } d > 0 \text{ such that } \mathcal{R}(\gamma') \neq \mathcal{R}(\gamma) \text{ and } \mathcal{R}(\gamma' + d') \in \{\mathcal{R}(\gamma'), \mathcal{R}(\gamma)\} \text{ for all } d' \in [0, d)\}$
- \triangledown pre$(\gamma) = \text{delay-pre}(\gamma) \cup \bigcup_{t \in T} \text{t-pre}(\gamma)$

Here, $\mathcal{R}(\gamma)$ is the unique region \mathcal{R}' with $\gamma \in \mathcal{R}'$.

Lemma:

Let \mathcal{R} be a region and $t \in T$.

- \triangledown delay-pre$([\mathcal{R}]^\uparrow) = [\mathcal{R}_1]^\uparrow \cup \ldots \cup [\mathcal{R}_k]^\uparrow$
 for some effectively computable k and \mathcal{R}_i
 set $\text{delay-pre}(\mathcal{R}) := \{\mathcal{R}_1, \ldots, \mathcal{R}_k\}$
Decidability of coverability for TdPN

Definition:

Let $\gamma \in \text{Conf}_N$ and $t \in T$.

- $t\text{-pre}(\gamma) := \{\gamma' \mid \gamma' \xrightarrow{t} \gamma\}$
- $\text{delay\text{-}pre}(\gamma) := \{\gamma' \mid \gamma' \xrightarrow{d} \gamma \text{ for some } d > 0 \text{ such that } R(\gamma') \neq R(\gamma) \text{ and } R(\gamma' + d') \in \{R(\gamma'), R(\gamma)\} \text{ for all } d' \in [0, d)\}$
- $\text{pre}(\gamma) = \text{delay\text{-}pre}(\gamma) \cup \bigcup_{t \in T} t\text{-pre}(\gamma)$

Here, $R(\gamma)$ is the unique region R' with $\gamma \in R'$.

Lemma:

Let \mathcal{R} be a region and $t \in T$.

- $\text{delay\text{-}pre}(\mathcal{R}^\uparrow) = \mathcal{R}_1^\uparrow \cup \ldots \cup \mathcal{R}_k^\uparrow$
 for some effectively computable k and \mathcal{R}_i
 set $\text{delay\text{-}pre}(\mathcal{R}) := \{\mathcal{R}_1, \ldots, \mathcal{R}_k\}$
- $t\text{-pre}(\mathcal{R}^\uparrow) = \mathcal{R}_1^\uparrow \cup \ldots \cup \mathcal{R}_k^\uparrow$
 for some effectively computable k and \mathcal{R}_i
Decidability of coverability for TdPN

Definition:
Let $\gamma \in \text{Conf}_N$ and $t \in T$.

1. t-pre(γ) := $\{ \gamma' \mid \gamma' \xrightarrow{t} \gamma \}$
2. delay-pre(γ) := $\{ \gamma' \mid \gamma' \xrightarrow{d} \gamma \text{ for some } d > 0 \text{ such that } R(\gamma') \neq R(\gamma) \text{ and } R(\gamma' + d') \in \{ R(\gamma'), R(\gamma) \} \text{ for all } d' \in [0, d) \}$
3. pre(γ) = delay-pre(γ) $\cup \bigcup_{t \in T} t$-pre(γ)

Here, $R(\gamma)$ is the unique region R' with $\gamma \in R'$.

Lemma:
Let R be a region and $t \in T$.

1. delay-pre($[R]^\uparrow$) = $[R_1]^\uparrow \cup \ldots \cup [R_k]^\uparrow$
 for some effectively computable k and R_i
 set delay-pre(R) := $\{ R_1, \ldots, R_k \}$
2. t-pre($[R]^\uparrow$) = $[R_1]^\uparrow \cup \ldots \cup [R_k]^\uparrow$
 for some effectively computable k and R_i
 set t-pre(R) := $\{ R_1, \ldots, R_k \}$
The algorithm

Algorithm

\[S := \{ \mathcal{R}(\hat{\gamma}) \} \]

repeat

\[S' := S \]

\[S := S \cup (\text{delay-pre}(S) \cup \bigcup_{t \in T} t\text{-pre}(S)) \]

\[\setminus \{ \mathcal{R}' \mid \text{there is } \mathcal{R} \in S \text{ such that } \mathcal{R} \preceq \mathcal{R}' \} \]

until \(S = S' \)

check if \(\mathcal{R} \preceq \mathcal{R}(q_0) \) for some \(\mathcal{R} \in S \)
The algorithm

Algorithm

\[S := \{ \mathcal{R}(\hat{\gamma}) \} \]
repeat
\[S' := S \]
\[S := S \cup ((\text{delay-pre}(S) \cup \bigcup_{t \in T} t\text{-pre}(S)) \setminus \{ \mathcal{R}' \mid \text{there is } \mathcal{R} \in S \text{ such that } \mathcal{R} \preceq \mathcal{R}' \}) \]
until \(S = S' \)
check if \(\mathcal{R} \preceq \mathcal{R}(q_0) \) for some \(\mathcal{R} \in S \)

Proof: termination
The algorithm

Algorithm

\[S := \{ R(\hat{\gamma}) \} \]

repeat

\[S' := S \]

\[S := S \cup \left((\text{delay-pre}(S) \cup \bigcup_{t \in T} t\text{-pre}(S)) \right) \]

\[\setminus \{ R' \mid \text{there is } R \in S \text{ such that } R \preceq R' \} \]

until \(S = S' \)

check if \(R \preceq R(q_0) \) for some \(R \in S \)

Proof: termination

By the wqo property.
The algorithm

Algorithm

\[S := \{ \mathcal{R}(\hat{\gamma}) \} \]

repeat

\[S' := S \]

\[S := S \cup (\text{delay-pre}(S) \cup \bigcup_{t \in T} t-\text{pre}(S)) \]

\[\backslash \{ \mathcal{R}' \mid \text{there is } \mathcal{R} \in S \text{ such that } \mathcal{R} \preceq \mathcal{R}' \} \]

until \(S = S' \)

check if \(\mathcal{R} \preceq \mathcal{R}(q_0) \) for some \(\mathcal{R} \in S \)

Proof: termination

By the wqo property.

Proof: correctness
The algorithm

Algorithm

\[S := \{ \mathcal{R}(\hat{\gamma}) \} \]

repeat
\[S' := S \]
\[S := S \cup (\text{delay-pre}(S) \cup \bigcup_{t \in T} t\text{-pre}(S)) \]
\[\setminus \{ R' | \text{there is } R \in S \text{ such that } R \preceq R' \} \]
until \(S = S' \)

check if \(R \preceq \mathcal{R}(q_0) \) for some \(R \in S \)

Proof: termination

By the wqo property.

Proof: correctness

By the previous lemma, \([S]^\uparrow = \text{pre}^*[\mathcal{R}(\hat{\gamma})]^\uparrow \).
Computation of time-delay predecessors

Computation of $\text{delay-pre}([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$

We distinguish three cases:

1. $a_0 \cap (P \times \{0\}) \neq \emptyset$
Computation of time-delay predecessors

Computation of $\text{delay-pre}([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0a_1 \ldots a_n a_\infty$

We distinguish three cases:

1. $a_0 \cap (P \times \{0\}) \neq \emptyset$

 $\implies \text{delay-pre}([\mathcal{R}]^\uparrow) = \emptyset$
Computation of time-delay predecessors

Computation of $\text{delay-pre}([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$

We distinguish three cases:

1. $a_0 \cap (P \times \{0\}) \neq \emptyset$

 $\implies \text{delay-pre}([\mathcal{R}]^\uparrow) = \emptyset$

 (cannot let elapse $d > 0$ and reach 0)
Computation of time-delay predecessors

Computation of $\text{delay-pre}([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0a_1 \ldots a_na_\infty$

We distinguish three cases:

1. $a_0 \cap (P \times \{0\}) \neq \emptyset$
 \[\implies \text{delay-pre}([\mathcal{R}]^\uparrow) = \emptyset \]
 (cannot let elapse $d > 0$ and reach 0)

2. $a_0 \cap (P \times \{0\}) = \emptyset$ and $a_0 \neq \emptyset$
Computation of time-delay predecessors

Computation of delay-pre\([\mathcal{R}^\uparrow]\) **for** \(\mathcal{R} = a_0a_1 \ldots a_na_\infty\)**

We distinguish three cases:

1. \(a_0 \cap (P \times \{0\}) \neq \emptyset\)
 \[\implies \text{delay-pre}([\mathcal{R}]^\uparrow) = \emptyset\]
 (cannot let elapse \(d > 0\) and reach \(0\))

2. \(a_0 \cap (P \times \{0\}) = \emptyset\) and \(a_0 \neq \emptyset\)
 \[\implies \text{delay-pre}([\mathcal{R}]^\uparrow) = [\emptyset a_1 \ldots a_na_{n+1}a_\infty]^\uparrow\text{ where } a_{n+1} = "a_0 - 1"\]
Computation of time-delay predecessors

Computation of \(delay-pre([R]^\uparrow) \) **for** \(R = a_0a_1 \ldots a_na_\infty \)**

We distinguish three cases:

1. \(a_0 \cap (P \times \{0\}) \neq \emptyset \)
 \[\implies delay-pre([R]^\uparrow) = \emptyset \]
 (cannot let elapse \(d > 0 \) and reach 0)

2. \(a_0 \cap (P \times \{0\}) = \emptyset \) and \(a_0 \neq \emptyset \)
 \[\implies delay-pre([R]^\uparrow) = [\emptyset a_1 \ldots a_n a_{n+1} a_\infty]^\uparrow \text{ where } a_{n+1} = "a_0 - 1" \]
 (very small reverse time elapse; no token in \(a_1 \ldots a_n \) reaches border)
Computation of time-delay predecessors

Computation of $\text{delay-pre}([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$

We distinguish three cases:

1. \(a_0 \cap (P \times \{0\}) \neq \emptyset\)

 \[\implies \text{delay-pre}([\mathcal{R}]^\uparrow) = \emptyset\]

 (cannot let elapse $d > 0$ and reach 0)

2. \(a_0 \cap (P \times \{0\}) = \emptyset\) and \(a_0 \neq \emptyset\)

 \[\implies \text{delay-pre}([\mathcal{R}]^\uparrow) = [\emptyset a_1 \ldots a_n a_{n+1} a_\infty]^\uparrow\]

 where \(a_{n+1} = "a_0 - 1"

 (very small reverse time elapse; no token in \(a_1 \ldots a_n\) reaches border)

3. \(a_0 = \emptyset\)
Computation of time-delay predecessors

Computation of \(\text{delay-pre}(\mathcal{R}^{\uparrow}) \) for \(\mathcal{R} = a_0a_1\ldots a_na_{\infty} \)

We distinguish three cases:

1. \(a_0 \cap (P \times \{0\}) \neq \emptyset \)

 \[\implies \text{delay-pre}(\mathcal{R}^{\uparrow}) = \emptyset \]

 (cannot let elapse \(d > 0 \) and reach \(0 \))

2. \(a_0 \cap (P \times \{0\}) = \emptyset \) and \(a_0 \neq \emptyset \)

 \[\implies \text{delay-pre}(\mathcal{R}^{\uparrow}) = [\emptyset a_1\ldots a_na_{n+1}a_{\infty}]^{\uparrow} \text{ where } a_{n+1} = "a_0 - 1" \]

 (very small reverse time elapse; no token in \(a_1\ldots a_n \) reaches border)

3. \(a_0 = \emptyset \)

Three cases:
Computation of time-delay predecessors

Computation of $\text{delay-pre}([R]^\uparrow)$ for $R = a_0a_1 \ldots a_na_\infty$

We distinguish three cases:

1. $a_0 \cap (P \times \{0\}) \neq \emptyset$

 $\implies \text{delay-pre}([R]^\uparrow) = \emptyset$

 (cannot let elapse $d > 0$ and reach 0)

2. $a_0 \cap (P \times \{0\}) = \emptyset$ and $a_0 \neq \emptyset$

 $\implies \text{delay-pre}([R]^\uparrow) = [\emptyset a_1 \ldots a_na_{n+1}a_\infty]^\uparrow$ where $a_{n+1} = "a_0 - 1"

 (very small reverse time elapse; no token in $a_1 \ldots a_n$ reaches border)

3. $a_0 = \emptyset$

 Three cases:

 3.1 tokens of a_1 will first reach integral value
Computation of time-delay predecessors

Computation of $\text{delay-pre}([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$

We distinguish three cases:

1. $a_0 \cap (P \times \{0\}) \neq \emptyset$
 $$\implies \text{delay-pre}([\mathcal{R}]^\uparrow) = \emptyset$$
 (cannot let elapse $d > 0$ and reach 0)

2. $a_0 \cap (P \times \{0\}) = \emptyset$ and $a_0 \neq \emptyset$
 $$\implies \text{delay-pre}([\mathcal{R}]^\uparrow) = [\emptyset a_1 \ldots a_n a_{n+1} a_\infty]^\uparrow$$
 where $a_{n+1} = "a_0 - 1"$
 (very small reverse time elapse; no token in $a_1 \ldots a_n$ reaches border)

3. $a_0 = \emptyset$
 Three cases:
 3.1 tokens of a_1 will first reach integral value
 3.2 some tokens of a_∞ will first reach \max (for some $b_\infty \leq a_\infty$)
Computation of time-delay predecessors

Computation of $\text{delay-pre}([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0a_1\ldots a_na_\infty$

We distinguish three cases:

1. $a_0 \cap (P \times \{0\}) \neq \emptyset$
 \[\implies \text{delay-pre}([\mathcal{R}]^\uparrow) = \emptyset\]
 (cannot let elapse $d > 0$ and reach 0)

2. $a_0 \cap (P \times \{0\}) = \emptyset$ and $a_0 \neq \emptyset$
 \[\implies \text{delay-pre}([\mathcal{R}]^\uparrow) = [\emptyset a_1 \ldots a_n a_{n+1} a_\infty]^\uparrow \text{ where } a_{n+1} = "a_0 - 1"\]
 (very small reverse time elapse; no token in $a_1\ldots a_n$ reaches border)

3. $a_0 = \emptyset$

 Three cases:
 3.1 tokens of a_1 will first reach integral value
 3.2 some tokens of a_∞ will first reach max (for some $b_\infty \leq a_\infty$)
 3.3 both at the same time
Computation of time-delay predecessors

Computation of $\text{delay-pre}([R]↑)$ for $R = a_0a_1\ldots a_na_∞$

We distinguish three cases:

1. $a_0 \cap (P \times \{0\}) \neq \emptyset$
 \[\implies \text{delay-pre}([R]↑) = \emptyset\]
 (cannot let elapse $d > 0$ and reach 0)

2. $a_0 \cap (P \times \{0\}) = \emptyset$ and $a_0 \neq \emptyset$
 \[\implies \text{delay-pre}([R]↑) = [\emptyset a_1\ldots a_na_{n+1}a_∞]↑\text{ where } a_{n+1} = “a_0 - 1”\]
 (very small reverse time elapse; no token in $a_1\ldots a_n$ reaches border)

3. $a_0 = \emptyset$
 Three cases:
 3.1 tokens of a_1 will first reach integral value
 3.2 some tokens of $a_∞$ will first reach \max (for some $b_∞ \leq a_∞$)
 3.3 both at the same time
 \[3.3 \implies \text{delay-pre}([R]↑) = [a'_0a_2\ldots a_na'_∞]↑\]
 where $a'_∞ = a_∞ - b_∞$
Computation of time-delay predecessors

Computation of delay-pre([R]^↑) for \(R = a_0a_1 \ldots a_na_∞ \)

We distinguish three cases:

1. \(a_0 \cap (P \times \{0\}) \neq \emptyset \)
 \[\implies \text{delay-pre}([R]^↑) = \emptyset \]
 (cannot let elapse \(d > 0 \) and reach 0)

2. \(a_0 \cap (P \times \{0\}) = \emptyset \) and \(a_0 \neq \emptyset \)
 \[\implies \text{delay-pre}([R]^↑) = [\emptyset a_1 \ldots a_na_{n+1}a_∞]^↑ \]
 where \(a_{n+1} = "a_0 - 1" \)
 (very small reverse time elapse; no token in \(a_1 \ldots a_n \) reaches border)

3. \(a_0 = \emptyset \)
 Three cases:
 3.1 tokens of \(a_1 \) will first reach integral value
 3.2 some tokens of \(a_∞ \) will first reach max (for some \(b_∞ \leq a_∞ \))
 3.3 both at the same time

3.3 \(\implies \text{delay-pre}([R]^↑) = [a'_0a_2 \ldots a_na'_∞]^↑ \)
 where \(a'_∞ = a_∞ - b_∞ \) and \(a'_0 = a_1 + b_∞[∞ \rightarrow \text{max}] \)
Computation of transition predecessors

Notation:

Let $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ be a region. For $(p, x) \in a_i$, we write $(i, x) \models I$ if the “real value” of x belongs to I.
Computation of transition predecessors

Notation:

Let $\mathcal{R} = a_0a_1 \ldots a_na_\infty$ be a region. For $(p, x) \in a_i$, we write $(i, x) \models I$ if the “real value” of x belongs to I.

Example:

For $\mathcal{R} = \emptyset(p, 2)\emptyset$, we have $(1, 2) \models (2, 3]$.
Computation of transition predecessors

Notation:
Let $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ be a region. For $(p, x) \in a_i$, we write $(i, x) \models I$ if the “real value” of x belongs to I.

Example:
For $\mathcal{R} = \emptyset(p, 2)\emptyset$, we have $(1, 2) \models (2, 3)$.

Computation of $t\text{-}pre([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$

Transition t produces a bag of tokens $Post(t)$. This bag might appear in the a_i’s or only in the upward closure.
Computation of transition predecessors

Notation:
Let $R = a_0 a_1 \ldots a_n a_\infty$ be a region. For $(p, x) \in a_i$, we write $(i, x) \models I$ if the “real value” of x belongs to I.

Example:
For $R = \emptyset(p, 2) \emptyset$, we have $(1, 2) \models (2, 3]$.

Computation of $t\text{-}pre([R]^\uparrow)$ for $R = a_0 a_1 \ldots a_n a_\infty$
Transition t produces a bag of tokens $Post(t)$. This bag might appear in the a_i’s or only in the upward closure.

\[\implies \text{Choose:} \]
\begin{itemize}
 \item $post_0, \ldots, post_n \in Bag(P \times \{0, \ldots, max\} \times Int)$
 \item $post_\infty \in Bag(P \times \{\infty\} \times Int)$
\end{itemize}
such that
Computation of transition predecessors

Notation:
Let $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ be a region. For $\langle p, x \rangle \in a_i$, we write $(i, x) \models I$ if the “real value” of x belongs to I.

Example:
For $\mathcal{R} = \emptyset(p, 2)\emptyset$, we have $(1, 2) \models (2, 3]$.

Computation of $t\text{-}pre([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$
Transition t produces a bag of tokens $Post(t)$. This bag might appear in the a_i's or only in the upward closure. \implies Choose:

- $post_0, \ldots, post_n \in Bag(P \times \{0, \ldots, \text{max}\} \times \text{Int})$
- $post_\infty \in Bag(P \times \{\infty\} \times \text{Int})$

such that

- $(i, x) \models I$ for all $i \in \{0, \ldots, n, \infty\}$ and $(p, x, I) \leq post_i$
Computation of transition predecessors

Notation:
Let $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ be a region. For $(p, x) \in a_i$, we write $(i, x) \models I$ if the “real value” of x belongs to I.

Example:
For $\mathcal{R} = \emptyset(p, 2)\emptyset$, we have $(1, 2) \models (2, 3]$.

Computation of $t\text{-}pre([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$
Transition t produces a bag of tokens $Post(t)$. This bag might appear in the a_i’s or only in the upward closure. \implies Choose:

- $post_0, \ldots, post_n \in Bag(P \times \{0, \ldots, max\} \times Int)$
- $post_\infty \in Bag(P \times \{\infty\} \times Int)$

such that

- $(i, x) \models I$ for all $i \in \{0, \ldots, n, \infty\}$ and $(p, x, I) \leq post_i$
- $\Pi_{1,2}(post_i) \leq a_i$ for all $i \in \{0, \ldots, n, \infty\}$
Computation of transition predecessors

Notation:
Let $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ be a region. For $(p, x) \in a_i$, we write $(i, x) \models I$ if the “real value” of x belongs to I.

Example:
For $\mathcal{R} = \emptyset(p, 2)\emptyset$, we have $(1, 2) \models (2, 3]$.

Computation of t-$\text{pre}([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$

Transition t produces a bag of tokens $\text{Post}(t)$. This bag might appear in the a_i’s or only in the upward closure. Choose:

- $\text{post}_0, \ldots, \text{post}_n \in \text{Bag}(P \times \{0, \ldots, \text{max} \} \times \text{Int})$
- $\text{post}_\infty \in \text{Bag}(P \times \{\infty\} \times \text{Int})$

such that

- $(i, x) \models I$ for all $i \in \{0, \ldots, n, \infty\}$ and $(p, x, I) \leq \text{post}_i$
- $\Pi_{1,2}(\text{post}_i) \leq a_i$ for all $i \in \{0, \ldots, n, \infty\}$
- $(\sum_i \Pi_{1,3}(\text{post}_i)) \leq \text{Post}(t)$
Computation of transition predecessors

Computation of $t\text{-}\text{pre}(\uparrow R)$ for $R = a_0a_1\ldots a_na_\infty$ (cntd.)

We obtain $R' = a'_0a'_1\ldots a'_na'_\infty \preceq R$ by deleting all $post_i$ from a_i. Choose:

- $n'' \geq n'$
Computation of transition predecessors

Computation of \(t \)-pre(\([\mathcal{R}]^\uparrow\) for \(\mathcal{R} = a_0 a_1 \ldots a_n a_\infty \) (cntd.)

We obtain \(\mathcal{R}' = a'_0 a'_1 \ldots a'_n a'_\infty \preceq \mathcal{R} \) by deleting all \(\text{post}_i \) from \(a_i \). Choose:

- \(n'' \geq n' \)
- \(\text{pre}_0, \ldots, \text{pre}_{n''} \in \text{Bag}(P \times \{0, \ldots, \text{max}\} \times \text{Int}) \)
We obtain $\mathcal{R}' = a'_0a'_1\ldots a'_n a'_\infty \preceq \mathcal{R}$ by deleting all $post_i$ from a_i. Choose:

- $n'' \geq n'$
- $pre_0, \ldots, pre_{n''} \in Bag(P \times \{0, \ldots, max\} \times \text{Int})$
- $pre_\infty \in Bag(P \times \{\infty\} \times \text{Int})$
Computation of transition predecessors

Computation of t-\(pre([\mathcal{R}]^\uparrow)\) for $\mathcal{R} = a_0a_1 \ldots a_na_\infty$ (cntd.)

We obtain $\mathcal{R}' = a'_0a'_1 \ldots a'_na'_\infty \preceq \mathcal{R}$ by deleting all $post_i$ from a_i. Choose:

- $n'' \geq n'$
- $pre_0, \ldots, pre_{n''} \in Bag(P \times \{0, \ldots, \max\} \times Int)$
- $pre_\infty \in Bag(P \times \{\infty\} \times Int)$
- $f : \{1, \ldots, n'\} \rightarrow \{1, \ldots, n''\}$ strictly increasing

such that
Computation of transition predecessors

Computation of $t\text{-pre}([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ (cntd.)

We obtain $\mathcal{R}' = a'_0 a'_1 \ldots a'_n a'_\infty \preceq \mathcal{R}$ by deleting all post_i from a_i. Choose:

- $n'' \geq n'$
- $\text{pre}_0, \ldots, \text{pre}_{n''} \in \text{Bag}(P \times \{0, \ldots, \max\} \times \text{Int})$
- $\text{pre}_\infty \in \text{Bag}(P \times \{\infty\} \times \text{Int})$
- $f : \{1, \ldots, n'\} \to \{1, \ldots, n''\}$ strictly increasing

such that

- $(i, x) \models I$ for all $i \in \{0, \ldots, n'', \infty\}$ and $(p, x, I) \leq \text{pre}_i$
Computation of transition predecessors

Computation of t-$pre([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0a_1 \ldots a_na_\infty$ (cntd.)

We obtain $\mathcal{R}' = a'_0a'_1 \ldots a'_n a'_\infty \preceq \mathcal{R}$ by deleting all $post_i$ from a_i. Choose:

- $n'' \geq n'$
- $pre_0, \ldots, pre_{n''} \in Bag(P \times \{0, \ldots, max\} \times \text{Int})$
- $pre_{\infty} \in Bag(P \times \{\infty\} \times \text{Int})$
- $f : \{1, \ldots, n'\} \to \{1, \ldots, n''\}$ strictly increasing

such that

- $(i, x) \models I$ for all $i \in \{0, \ldots, n'', \infty\}$ and $(p, x, I) \leq pre_i$
- $(\sum_i \Pi_{1,3}(pre_i)) = Pre(t)$
Computation of \(t-pre([R]↑) \) for \(R = a_0a_1 \ldots a_na∞ \) (cntd.)

We obtain \(R' = a'_0a'_1 \ldots a'_n a'_∞ \preceq R \) by deleting all \(post_i \) from \(a_i \). Choose:

\begin{itemize}
 \item \(n'' \geq n' \)
 \item \(pre_0, \ldots, pre_n'' \in Bag(P \times \{0, \ldots, max\} \times Int) \)
 \item \(pre_∞ \in Bag(P \times \{∞\} \times Int) \)
 \item \(f : \{1, \ldots, n'\} \to \{1, \ldots, n''\} \) strictly increasing
\end{itemize}

such that

\begin{itemize}
 \item \((i, x) \models I \) for all \(i \in \{0, \ldots, n'', ∞\} \) and \((p, x, I) \leq pre_i \)
 \item \((\sum_i Π_{1,3}(pre_i)) = Pre(t) \)
 \item \(a''_0 = a'_0 + Π_{1,2}(pre_0) \) and \(a''_∞ = a'_∞ + Π_{1,2}(pre_∞) \)
\end{itemize}
Computation of t-$\text{pre}([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0a_1 \ldots a_na_\infty$ (cntd.)

We obtain $\mathcal{R}' = a'_0a'_1 \ldots a'_na'_\infty \preceq \mathcal{R}$ by deleting all post_i from a_i. Choose:

- $n'' \geq n'$
- $\text{pre}_0, \ldots, \text{pre}_{n''} \in \text{Bag}(P \times \{0, \ldots, \text{max}\} \times \text{Int})$
- $\text{pre}_\infty \in \text{Bag}(P \times \{\infty\} \times \text{Int})$
- $f : \{1, \ldots, n'\} \rightarrow \{1, \ldots, n''\}$ strictly increasing

such that

- $(i, x) \models I$ for all $i \in \{0, \ldots, n'', \infty\}$ and $(p, x, I) \leq \text{pre}_i$
- $(\sum_i \Pi_{1,3}(\text{pre}_i)) = \text{Pre}(t)$
- $a''_0 = a'_0 + \Pi_{1,2}(\text{pre}_0)$ and $a''_\infty = a'_\infty + \Pi_{1,2}(\text{pre}_\infty)$
- for all $i \in \{1, \ldots, n''\}$:
 \[a''_i = \]
Computation of transition predecessors

Computation of t-**pre**($[\mathcal{R}]^\uparrow$) **for** $\mathcal{R} = a_0 a_1 \ldots a_n a_\infty$ (cntd.)

We obtain $\mathcal{R}' = a'_0 a'_1 \ldots a'_n a'_\infty \preceq \mathcal{R}$ by deleting all post_i from a_i. Choose:

- $n'' \geq n'$
- $\text{pre}_0, \ldots, \text{pre}_{n''} \in \text{Bag}(P \times \{0, \ldots, \text{max}\} \times \text{Int})$
- $\text{pre}_\infty \in \text{Bag}(P \times \{\infty\} \times \text{Int})$
- $f : \{1, \ldots, n'\} \to \{1, \ldots, n''\}$ strictly increasing such that
 - $(i, x) \models I$ for all $i \in \{0, \ldots, n'', \infty\}$ and $(p, x, I) \preceq \text{pre}_i$
 - $(\sum_i \Pi_{1,3}(\text{pre}_i)) = \text{Pre}(t)$
 - $a''_0 = a'_0 + \Pi_{1,2}(\text{pre}_0)$ and $a''_\infty = a'_\infty + \Pi_{1,2}(\text{pre}_\infty)$
 - for all $i \in \{1, \ldots, n''\}$:
 - $a''_i = \begin{cases} a'_j + \Pi_{1,2}(\text{pre}_i) & \text{if } f(j) = i \text{ for some } j \in \{1, \ldots, n'\} \end{cases}$
Computation of transition predecessors

Computation of t-$pre([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0a_1\ldots a_na_\infty$ (cntd.)

We obtain $\mathcal{R}' = a'_0a'_1\ldots a'_na'_\infty \preceq \mathcal{R}$ by deleting all $post_i$ from a_i. Choose:

- $n'' \geq n'$
- $pre_0, \ldots, pre_{n''} \in Bag(P \times \{0, \ldots, \text{max}\} \times \text{Int})$
- $pre_\infty \in Bag(P \times \{\infty\} \times \text{Int})$
- $f : \{1, \ldots, n'\} \rightarrow \{1, \ldots, n''\}$ strictly increasing

such that

- $(i, x) \models I$ for all $i \in \{0, \ldots, n'', \infty\}$ and $(p, x, I) \leq pre_i$
- $(\sum_i \Pi_{1,3}(pre_i)) = Pre(t)$
- $a''_0 = a'_0 + \Pi_{1,2}(pre_0)$ and $a''_\infty = a'_\infty + \Pi_{1,2}(pre_\infty)$
- for all $i \in \{1, \ldots, n''\}$:

 $$a''_i = \begin{cases} a'_j + \Pi_{1,2}(pre_i) & \text{if } f(j) = i \text{ for some } j \in \{1, \ldots, n'\} \\ \Pi_{1,2}(pre_i) & \text{otherwise} \end{cases}$$
Computation of transition predecessors

Computation of t-pre$([\mathcal{R}]^\uparrow)$ for $\mathcal{R} = a_0a_1\ldots a_na_\infty$ (cntd.)

We obtain $\mathcal{R}' = a'_0a'_1\ldots a'_na'_\infty \preceq \mathcal{R}$ by deleting all post$_i$ from a_i. Choose:

- $n'' \geq n'$
- $pre_0,\ldots, pre_{n''} \in Bag(P \times \{0,\ldots, \text{max}\} \times \text{Int})$
- $pre_\infty \in Bag(P \times \{\infty\} \times \text{Int})$
- $f : \{1,\ldots, n'\} \rightarrow \{1,\ldots, n''\}$ strictly increasing

such that

- $(i, x) \models I$ for all $i \in \{0,\ldots, n'', \infty\}$ and $(p, x, I) \leq pre_i$
- $(\sum_i \Pi_{1,3}(pre_i)) = Pre(t)$
- $a''_0 = a'_0 + \Pi_{1,2}(pre_0)$ and $a''_\infty = a'_\infty + \Pi_{1,2}(pre_\infty)$
- for all $i \in \{1,\ldots, n''\}$:

$$a''_i = \begin{cases} a'_j + \Pi_{1,2}(pre_i) & \text{if } f(j) = i \text{ for some } j \in \{1,\ldots, n'\} \\ \Pi_{1,2}(pre_i) & \text{otherwise} \end{cases}$$

In this way, we obtain one t-predecessor \mathcal{R}'' of $[\mathcal{R}]^\uparrow$ with $\mathcal{R}' \preceq \mathcal{R}''$.
Computation of transition predecessors

Computation of \(t\text{-pre}([R]^\uparrow) \) for \(R = a_0a_1\ldots a_n a_\infty \) (cntd.)

We obtain \(R' = a'_0a'_1\ldots a'_n a'_\infty \preceq R \) by deleting all \(post_i \) from \(a_i \). Choose:

- \(n'' \geq n' \)
- \(pre_0,\ldots, pre_{n''} \in Bag(P \times \{0,\ldots, max\} \times Int) \)
- \(pre_\infty \in Bag(P \times \{\infty\} \times Int) \)
- \(f : \{1,\ldots, n'\} \rightarrow \{1,\ldots, n''\} \) strictly increasing

such that

- \((i, x) \models I \) for all \(i \in \{0,\ldots, n'', \infty\} \) and \((p, x, I) \leq pre_i \)
- \((\sum_i \Pi_{1,3}(pre_i)) = Pre(t) \)
- \(a''_0 = a'_0 + \Pi_{1,2}(pre_0) \) and \(a''_\infty = a'_\infty + \Pi_{1,2}(pre_\infty) \)
- for all \(i \in \{1,\ldots, n''\} : \)
 \[
 a''_i = \begin{cases}
 a'_j + \Pi_{1,2}(pre_i) & \text{if } f(j) = i \text{ for some } j \in \{1,\ldots, n'\} \\
 \Pi_{1,2}(pre_i) & \text{otherwise}
 \end{cases}
 \]

In this way, we obtain one \(t\)-predecessor \(R'' \) of \([R]^\uparrow\) with \(R' \preceq R'' \). It depends on the choices of \(post_i, pre_i, n', n'', f \) etc.
Computation of transition predecessors

Computation of t-pre$(\lceil R \rceil^\uparrow)$ for $R = a_0 a_1 \ldots a_n a_\infty$ (cntd.)

We obtain $R' = a'_0 a'_1 \ldots a'_n a'_\infty \preceq R$ by deleting all $post_i$ from a_i. Choose:

- $n'' \geq n'$
- $pre_0, \ldots, pre_{n''} \in Bag(P \times \{0, \ldots, \text{max}\} \times \text{Int})$
- $pre_\infty \in Bag(P \times \{\infty\} \times \text{Int})$
- $f : \{1, \ldots, n'\} \rightarrow \{1, \ldots, n''\}$ strictly increasing

such that

- $(i, x) \models I$ for all $i \in \{0, \ldots, n'', \infty\}$ and $(p, x, I) \leq pre_i$
- $\left(\sum_i \Pi_{1,3}(pre_i) \right) = \text{Pre}(t)$
- $a''_0 = a'_0 + \Pi_{1,2}(pre_0)$ and $a''_\infty = a'_\infty + \Pi_{1,2}(pre_\infty)$
- for all $i \in \{1, \ldots, n''\}$:
 \[
 a''_i = \begin{cases}
 a'_j + \Pi_{1,2}(pre_i) & \text{if } f(j) = i \text{ for some } j \in \{1, \ldots, n'\} \\
 \Pi_{1,2}(pre_i) & \text{otherwise}
 \end{cases}
 \]

In this way, we obtain one t-predecessor R'' of $\lceil R \rceil^\uparrow$ with $R' \preceq R''$. It depends on the choices of $post_i, pre_i, n', n'', f$ etc. We obtain finitely many regions R_1, \ldots, R_k.
Computation of transition predecessors

Computation of \(t\text{-pre}([\mathcal{R}]^\uparrow) \) **for** \(\mathcal{R} = a_0a_1\ldots a_na_\infty \) **(cntd.)**

We obtain \(\mathcal{R}' = a'_0a'_1\ldots a'_na'_\infty \preceq \mathcal{R} \) by deleting all \(post_i \) from \(a_i \). Choose:

- \(n'' \geq n' \)
- \(pre_0, \ldots, pre_{n''} \in Bag(P \times \{0, \ldots, \max\} \times Int) \)
- \(pre_\infty \in Bag(P \times \{\infty\} \times Int) \)
- \(f : \{1, \ldots, n'\} \to \{1, \ldots, n''\} \) strictly increasing

such that

- \((i, x) \models I \) for all \(i \in \{0, \ldots, n'', \infty\} \) and \((p, x, I) \leq pre_i \)
- \(\left(\sum_i \Pi_{1,3}(pre_i) \right) = Pre(t) \)
- \(a''_0 = a'_0 + \Pi_{1,2}(pre_0) \) and \(a''_\infty = a'_\infty + \Pi_{1,2}(pre_\infty) \)
- for all \(i \in \{1, \ldots, n''\} \):

 \[
 a''_i = \begin{cases}
 a'_j + \Pi_{1,2}(pre_i) & \text{if } f(j) = i \text{ for some } j \in \{1, \ldots, n'\} \\
 \Pi_{1,2}(pre_i) & \text{otherwise}
 \end{cases}
 \]

In this way, we obtain one \(t\)-predecessor \(\mathcal{R}'' \) of \([\mathcal{R}]^\uparrow\) with \(\mathcal{R}' \preceq \mathcal{R}'' \). It depends on the choices of \(post_i, pre_i, n', n'', f \) etc. We obtain finitely many regions \(\mathcal{R}_1, \ldots, \mathcal{R}_k \) and one can show: \(t\text{-pre}([\mathcal{R}]^\uparrow) = [\mathcal{R}_1]^\uparrow \cup \ldots \cup [\mathcal{R}_k]^\uparrow \)
Try to formalize the following specification as a TPN and as a TdPN:

- There are concurrent events e and e' which may (but do not have to) occur.
- Event e may only occur at instants in $[0, 1]$.
- Event e' may occur at every instant.
Exercises

Exercise:
Try to formalize the following specification as a TPN and as a TdPN:

- There are concurrent events e and e' which may (but do not have to) occur.
- Event e may only occur at instants in $[0, 1]$.
- Event e' may occur at every instant.

Exercise:
Try to formalize the following specification as a TPN and as a TdPN:

- There is a single event which must occur at instant in $[0, 1]$.
Distributed Timed Automata

The Model
Existential Semantics and Region Abstraction
Universal Semantics and Undecidability
Reactive Semantics

Summary

Message Sequence Charts with Timing Constraints (TC-MSCs)

Message Sequence Charts (MSCs)
Message Sequence Charts with Timing Constraints (TC-MSCs)
Realizability of Single TC-MSCs
Message Sequence Graphs with Timing Constraints
Timed Channel Systems

Time(d) Petri Nets

Time Petri Nets (TPN)
Decision problems for TPN
Timed Petri Nets (TdPN)
Decision problems for TdPN
Decidability of Coverability for TdPN

Expressiveness (credits to Serge Haddad)
Time(d) Petri nets with acceptance condition

Definition:
A T(d)PN with acceptance condition is a T(d)PN that, in addition, has:
Time(d) Petri nets with acceptance condition

Definition:
A T(d)PN with acceptance condition is a T(d)PN that, in addition, has:
- a labeling function $\lambda : T \rightarrow \Sigma \cup \{\varepsilon\}$ for some alphabet Σ
Definition:

A T(d)PN with acceptance condition is a T(d)PN that, in addition, has:

- a labeling function $\lambda : T \rightarrow \Sigma \cup \{\varepsilon\}$ for some alphabet Σ
- a finite set $F \subseteq Bag(P)$
Definition:

A T(d)PN *with acceptance condition* is a T(d)PN that, in addition, has:

- a labeling function \(\lambda : T \to \Sigma \cup \{\varepsilon\} \) for some alphabet \(\Sigma \)
- a finite set \(F \subseteq \text{Bag}(P) \)

Definition: language

- The timed language of a T(d)PN \(\mathcal{N} \) is denoted by \(L_t(\mathcal{N}) \).
Definition:
A T(d)PN with acceptance condition is a T(d)PN that, in addition, has:
- a labeling function $\lambda : T \to \Sigma \cup \{\varepsilon\}$ for some alphabet Σ
- a finite set $F \subseteq Bag(P)$

Definition: language
- The timed language of a T(d)PN \mathcal{N} is denoted by $L_t(\mathcal{N})$.
- The untimed language of a T(d)PN \mathcal{N} is denoted by $L(\mathcal{N})$.
Definition:

A T(d)PN with acceptance condition is a T(d)PN that, in addition, has:

- a labeling function $\lambda : T \rightarrow \Sigma \cup \{\varepsilon\}$ for some alphabet Σ
- a finite set $F \subseteq Bag(P)$

Definition: language

- The timed language of a T(d)PN N is denoted by $L_t(N)$.
- The untimed language of a T(d)PN N is denoted by $L(N)$.

Both are defined in the obvious manner on the basis of TS_N.
Time(d) Petri nets with acceptance condition

\[
\begin{align*}
(p_0, 0) \xrightarrow{1} & (p_0, 1) \xrightarrow{t_1} (p_0, 0) + (p_1, 0) \xrightarrow{t_1} (p_0, 0) + (p_1, 0) + (p_1, 0) \\
\xrightarrow{2} & (p_0, 2) + (p_1, 2) + (p_1, 2) \xrightarrow{t_2} (p_0, 0) + (p_1, 2) + (p_1, 2) + (p_2, 0) \\
\xrightarrow{t_3} & (p_0, 0) + (p_1, 2) \xrightarrow{1} (p_0, 1) + (p_1, 3)
\end{align*}
\]
Time(d) Petri nets with acceptance condition

Example:

Suppose $(1, 1, 0)$ is a final configuration. Then:

$$(a, 1)(a, 1)(b, 3)(c, 3) \in L_t(\mathcal{N})$$
A hierarchy of languages

Theorem: (for untimed Petri nets)

\[
\text{REGL} \subseteq \text{CFLPNL} \subseteq \text{CSL} \\
\{a^n b^n c^n \mid n \in \mathbb{N}\} \subseteq \{a^n b^n \mid n \in \mathbb{N}\} \subseteq \{wcw^{-1} \mid w \in \{a, b\}^*\} \\
\{wcw \mid w \in \{a, b\}^*\} \\
\]
A hierarchy of languages

Example: An (untimed) Petri net for \(\{a^n b^n c^n \mid n \in \mathbb{N}\} \)

\[
F = \{(1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1)\}
\]
Expressiveness: A language point of view

Observation: There are non regular untimed languages of (unbounded) nets while all TA untimed languages are regular.

For timed languages:

Theorem: From TA to nets
- Timed Automata can be “simulated” by bounded TPNs.
- Timed Automata can be “simulated” by bounded TdPNs.

But these simulations are not valid wrt. bisimulation.

Theorem: From bounded nets to TA
- Bounded TPNs can be simulated by Timed Automata.
- Bounded TdPNs can be simulated by Timed Automata.

And these simulations are valid wrt. bisimulation.
The structural part

- There is a place per state.
- There is an *untimed* net transition per automata transition, i.e. with interval $[0, \infty)$, which takes as input the source state.
From TA to TPN

The structural part
- There is a place per state.
- There is an *untimed* net transition per automata transition, i.e. with interval $[0, \infty)$, which takes as input the source state.

Time guards
- There is a place $T_{x \sim c}$ per conjunct of a guard $x \sim c$ which is an input for the transitions where it occurs.
- The marking of such a place is ruled by an “independent” timed subnet.
From TA to TPN

The structural part

- There is a place per state.
- There is an *untimed* net transition per automata transition, i.e. with interval \([0, \infty)\), which takes as input the source state.

Time guards

- There is a place \(T_{x \sim c}\) per conjunct of a guard \(x \sim c\) which is an input for the transitions where it occurs.
- The marking of such a place is ruled by an “independent” timed subnet.

Clock Resets

- Clock resets consists (in zero time) to reinitialize all the timed subnets related to the clocks to be reset *whatever the state of these subnets*.
- The clock resets take place after the automata transition and before producing the token in the destination state.
From TA to TPN: an Example
From TA to TdPN

The structural part

- There is a place per state.
- There is a net transition per automata transition which takes as *untimed* input, i.e. with interval $[0, \infty)$, the source state.
From TA to TdPN

The structural part

- There is a place per state.
- There is a net transition per automata transition which takes as *untimed* input, i.e. with interval $[0, \infty)$, the source state.

Time guards

- There is a place $T_{x \sim c}$ per conjunct of a guard $x \sim c$ which is an untimed input for the transitions where it occurs.
- The *control* that a token of such a place has been checked at appropriate time is performed by an “independent” timed subnet *with an acceptance condition*.
From TA to TdPN

The structural part

- There is a place per state.
- There is a net transition per automata transition which takes as untimed input, i.e. with interval $[0, \infty)$, the source state.

Time guards

- There is a place $T_{x \sim c}$ per conjunct of a guard $x \sim c$ which is an untimed input for the transitions where it occurs.
- The control that a token of such a place has been checked at appropriate time is performed by an “independent” timed subnet with an acceptance condition.

Clock Resets

- Clock resets consists (in zero time) in reinitializing all the timed subnets related to the clocks to be reset whatever the state of these subnets.
- The clock resets take place after the automata transition and before producing the token in the destination state.
From TA to TdPN: an Example

Acceptance condition $T_{x<1} = 0$
From Bounded TPN to TA

There is one clock x_t per transition t.

Build the reachability graph.

- The locations of the TA are the reachable markings.
- The transitions of the TA are the transitions of the reachability graph.

Define the invariants. Given T_m the set of transitions enabled at m

The invariant of m is: $\bigwedge_{t \in T_m} x_t \leq l(t)$.

Define the guards and updates. Given a transition $m \xrightarrow{t} m'$,

- The guard is $x(t) \geq e(t)$
- The clocks to be reset are those associated with the newly enabled transitions.

Warning: There exists an alternative structural translation but it uses both networks of TA and finite counters.
From Bounded TPN to TA: an Example
From Bounded TdPN to TA

Transform the net such that all intervals of output arcs are $[0, 0]$.

Build the reachability graph with token identities p_i and instances of transitions

- The locations of the TA are the reachable markings.
- The transitions of the TA are the transitions of the reachability graph.

There is one clock x_{p_i} per token p_i in place p.

Define the guards and updates. Given a transition $m \xrightarrow{t} m'$,

- For every input arc (p, t) labelled by interval $[a, b]$ and consumed token p_i the guard is $a \leq x_{p_i} \leq b$
- The clocks to be reset are those associated with the tokens that are produced.
From Bounded TdPN to TA: an Example
Main References

On relation between TA and TPN
