Goals

- Learn the basics of using Coq
 - Specification language (Gallina)
 - Modelization
 - Tactics
- Study the underlying theory (Type Theory)
 - Formalisms: Calculus of Inductive Constructions
 - Features: inductive types.
- More in-depth theory: take 2-7-1!
 - Meta-theory: extraction, strong normalization, paradoxes.
Lectures:
- 8 lectures of 3h
- Teachers: Bruno Barras (4), Matthieu Sozeau (4)

Evaluation:
- A written exam (3h). Coef:2
- 1 exercise/project (modelization and proofs in Coq)
 Written report, Coef: 1
Program (provisional)

- **06/dec** (BB): First-order logic, λ-calculus, Simple types
- **13/dec** (BB): Dependent types, Universes
- **03/jan** (BB): CIC and general inductive types.
- **17/jan**: Break *project handout*
- **24/jan** (MS): Advanced inductive types.
- **31/jan** (MS): Functional programming, dependent types, extraction
- **07/feb** (MS): Modelization of mathematical structures, type-classes.
- **14/feb** (MS): Homotopy Type Theory.

Exam: **07/mar** *project due*
Installing Coq

- Linux: packages of major distributions, or opam
- Mac: precompiled binaries (dmg) or opam
- Windows: precompiled binaries (installer)

Beginners are invited to use CoqIDE.

Using ProofGeneral (emacs) is also possible.
Learning Coq

This module is just an initiation. See http://coq.inria.fr/documentation for other methods:

- Coq’Art (Y. Bertot, P. Casteran)
- Software Foundations (B. Pierce)
- Certified Programming with Dependent Types (A. Chlipala)
- ...

Help (see http://coq.inria.fr/community):

- Wiki: cocorico, list: coq-club
- Forums: Discourse, Gitter, Stack Overflow
- Video tutorials (A. Bauer)
Overview

1. Proof Assistants
2. First-order logic
3. Untyped λ-calculus
4. Simply typed λ-calculus
Proofs on computers

Doing proofs with computers requires:

- A language to represent objects and operations: integers, functions, sets, …
- A language to represent properties of objects: first-order logic, higher-order logic.
- A method to construct/verify proofs: basic rules + a way to mechanize them.

Approach based on higher-order logic:

- typed lambda-calculus for representing objects and properties
 - ≠ set theory (first order)
- tactics or well-typed proof terms for building and verifying proofs.
Examples of case studies

In the Coq proof assistant but analogous examples in Isabelle/HOL

- Formalisation of **semantics of JavaCard**, certification of security functionalities (Thales, Trusted Labs)
- Proof of the **4-colors theorem** (G. Gonthier, B. Werner - Inria - Microsoft Research)
- Proof of the **Feit-Thompson theorem** (G. Gonthier et al. - Inria - Microsoft Research)
- Development of a **certified C compiler** producing optimized code (Compcert, X. Leroy)
- Formalisation and reasoning on **floating-point number arithmetic** (S. Boldo, G. Melquiond . . .)
- Development of certified **static analysers** (D. Pichardie)
- . . .
First-order logic

Terms: \(x \mid f(t_1, \cdots, t_n) \) (\(f \) function symbol)

Formulae:
\(P(t_1, \cdots, t_n) \mid \top \mid \bot \mid A \land B \mid A \lor B \mid A \Rightarrow B \mid \forall x. A(x) \mid \exists x. A(x) \)
\((P \) predicate symbol\)

Natural deduction rules: intro/elim rules

\[
\frac{A \in \Delta}{\Delta \vdash A} (Ax) \quad \frac{\Delta \vdash \top}{\top - I} \quad \frac{\Delta \vdash \bot}{\bot - E}
\]
First-order: natural deduction rules

Conjunction

\[
\frac{\Delta \vdash A \quad \Delta \vdash B}{\Delta \vdash A \land B} (\land - I) \quad \frac{\Delta \vdash A \land B}{\Delta \vdash A} (\land - E_1) \quad \frac{\Delta \vdash A \land B}{\Delta \vdash B} (\land - E_2)
\]

Implication

\[
\frac{\Delta A \vdash B}{\Delta \vdash A \Rightarrow B} (\Rightarrow - I) \quad \frac{T \vdash A \Rightarrow B \quad \Delta \vdash A}{\Delta \vdash B} (\Rightarrow - E)
\]

Disjunction

\[
\frac{\Delta \vdash A}{\Delta \vdash A \lor B} (\lor - I_1) \quad \frac{\Delta \vdash B}{\Delta \vdash A \lor B} (\lor - I_2) \quad \frac{\Delta \vdash A \lor B \quad \Delta A \vdash C \quad \Delta B \vdash C}{\Delta \vdash C} (\lor - E) \quad \left(\frac{T \vdash A \lor \neg A}{\Delta \vdash C} (EM)\right)
\]
First-order: natural deduction rules

Universal quantification

\[
\frac{\Delta \vdash A(x) \quad x \text{ fresh}}{\Delta \vdash \forall x. A(x)} (\forall - I) \quad \frac{\Delta \vdash \forall x. A(x)}{\Delta \vdash A(t)} (\forall - E)
\]

Existential quantification

\[
\frac{\Delta \vdash A(t)}{\Delta \vdash \exists x. A(x)} (\exists - I) \quad \frac{\Delta A(x) \vdash C \quad x \text{ fresh}}{\Delta \exists x. A(x) \vdash C} (\exists - E)
\]
First-order logic in Coq

Syntax:

<table>
<thead>
<tr>
<th>FOL</th>
<th>Coq</th>
<th>Intro-rule</th>
<th>Elim-rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(t_1, \ldots, t_n))</td>
<td><code>P t1 .. tn</code></td>
<td><code>split</code></td>
<td><code>destruct <hyp></code></td>
</tr>
<tr>
<td>(A \land B)</td>
<td>(A \land B)</td>
<td><code>left, right</code></td>
<td><code>destruct <hyp></code></td>
</tr>
<tr>
<td>(A \lor B)</td>
<td><code>A \lor B</code></td>
<td><code>intro</code></td>
<td><code>apply</code></td>
</tr>
<tr>
<td>(\top, \bot)</td>
<td><code>True, False</code></td>
<td><code>trivial</code></td>
<td><code>apply</code></td>
</tr>
<tr>
<td>(A \Rightarrow B)</td>
<td><code>A \Rightarrow B</code></td>
<td><code>intro</code></td>
<td><code>apply</code></td>
</tr>
<tr>
<td>(\forall x. A(x))</td>
<td><code>forall x, A</code></td>
<td><code>exist <term></code></td>
<td><code>destruct <hyp></code></td>
</tr>
<tr>
<td>(\exists x. A(x))</td>
<td><code>exists x, A</code></td>
<td><code>exist <term></code></td>
<td><code>destruct <hyp></code></td>
</tr>
</tbody>
</table>

Exercices...
Church (1930s) proposed a notation for logical formulae:

- extends first-order terms with binders
 \[\Lambda ::= x | t_1 t_2 | \lambda x. t | c \]
 where \(c \) is a constant symbol
- A computation rule: \(\beta \)-reduction
 \[(\lambda x. t_1) t_2 \rightarrow_{\beta} t_1[t_2/x] \]
 capture once and for all the binding constructions.
- Formulae equal up to \(\beta \) are identified.

Note: not seen at this point as a universal computational model (such as Turing machines)
A notation for higher-order logic

Used as a notation for higher-order logic (for both formulae and terms):

- Symbols: ∧, ∨, ⇒, ⊤, ⊥, ¬, ∀, ∃. \((A ∧ B \text{ written } ∧ A B)\)
- \(λ\)-abstractions in formulae:
 \[
 ∀x. \, P(x) \text{ is written } ∀ (\lambda x. \, P(x))
 \]
- \(λ\)-abstractions in terms: functions, comprehension scheme
 \(λx. \, P(x)\) denotes the “set” (or collection) of all individuals (e.g. sets) that satisfy \(P\), and application \((t_1 \, t_2)\) denotes membership \(t_2 \in t_1\).

Inference rules (natural deduction style, \(Δ\) set of assumptions):

\[
\begin{align*}
 Δ \vdash P \, t & \quad \Delta \vdash ∃P \quad Δ; (P \, x) \vdash C \quad (x \text{ fresh}) \\
 Δ \vdash ∃P & \quad Δ \vdash C
\end{align*}
\]
A paradox (Kleene-Rosser, 1935)

As in naive set theory, we can build the “set of sets not belonging to themselves”: \(\delta = \lambda x. \neg (x \ x) \)

... and whether it belongs to itself is paradoxical

\[
\delta \ \delta \ \rightarrow_{\beta} \ \neg (\delta \ \delta)
\]

Exercise: prove \(\vdash \bot \), without using excluded-middle \((A \lor \neg A) \).
Simply-typed \(\lambda \)-calculus

Church (1940) fixed the paradox by forbidding terms that do not follow a typing discipline.

Types are either

- one of the base types (to be defined),
- or \(\tau \rightarrow \tau' \) the type of functions from \(\tau \) to \(\tau' \).

Typing rules \((\Gamma \vdash t : \tau)\)

\[
\begin{align*}
(\mathbf{x : \tau}) & \in \Gamma \\
\Gamma \vdash t : \tau \rightarrow \tau' & \quad \Gamma \vdash u : \tau \\
\Gamma; (\mathbf{x : \tau}) & \vdash t : \tau' \\
\Gamma \vdash \lambda \mathbf{x : \tau}. t : \tau \rightarrow \tau'
\end{align*}
\]
Church’s Higher-Order Logic (HOL) uses two base types:

- \(\iota \) the type of individuals (e.g. sets)
- \(o \) the type of logical formulae (propositions)

Constants:

\[
\begin{align*}
\top, \bot & : o \\
\neg & : o \rightarrow o \\
\Rightarrow & : o \rightarrow o \rightarrow o \\
\land, \lor & : o \rightarrow o \rightarrow o \\
\forall \tau \exists \tau & : (\tau \rightarrow o) \rightarrow o \\
\mathbf{=}_{\tau} & : \tau \rightarrow \tau \rightarrow o
\end{align*}
\]

(first-order quantifiers are \(\forall_{\iota} \) and \(\exists_{\iota} \))
Metatheory of HOL

\[\delta = \lambda x. \neg(x \ x) \] cannot be well-typed (since \(\tau \neq (\tau \to \tau') \))

HOL is a consistent logic: \(\not\vdash \bot \)

Proof assistants HOL (HOL4 HOL-Light) and Isabelle/HOL use variants of this formalism.
Next week:

- Dependent types
- Universes