1 Injection and discrimination

Consider the type of lists, defined in the prelude of Coq:

\[
\text{Inductive list (A:Type) :=}
\begin{align*}
\text{nil} & | \text{cons (a:A) (l:list A)}. \\
\end{align*}
\]

Prove, without using the dedicated tactics injection and discriminate, the following properties on lists:

1. Injectivity of \text{cons}:
 \[
 \text{cons \ x1 \ l1} = \text{cons \ x2 \ l2} \rightarrow x1=x2 \land l1=l2
 \]

2. Discrimination of \text{nil} and \text{cons}:
 \[
 \text{nil} \neq \text{cons \ x \ l}
 \]

2 Strict positivity

In this section we analyze the consequence of having an inductive type which does not comply with the strict positivity condition. We (partially) simulate the inductive definition

\[
\text{Inductive lambda := Lam (\lambda \rightarrow \lambda).}
\]

by assuming the introduction and case-analysis rules:

\[
\begin{align*}
\text{Parameter lambda : Type.} \\
\text{Parameter Lam : (lambda->lambda) -> lambda.} \\
\text{Parameter match_lambda : forall P:lambda -> Type, }<\text{todo}> \rightarrow \forall l, P l.
\end{align*}
\]

The \(\iota\)-reduction is represented by an equation:

\[
\text{Parameter lambda_eq : forall P H f, match_lambda P H (Lam f) = H f.}
\]

1- Encode the pure \(\lambda\)-calculus in this type, by defining application \text{app : lambda -> lambda -> lambda} and the \(\beta\)-equality \text{app (Lam f) x = f x}

2- Prove that any function \(f : \lambda \rightarrow \lambda\) has a fixpoint. That is, there exists a term \(t\) such that \(f \; t = t\).

3- Show that the above axiomatization of \text{lambda} does not introduce an inconsistency by exhibiting a \textit{model}. Complete the following piece of theory:

\[
\begin{align*}
\text{Definition L : Type := }<\text{todo}>. \\
\text{Definition Li (f:L->L) : L := }<\text{todo}>. \\
\text{Definition Lm (P:L->Type) (H:<todo>) (l:L) : P l := }<\text{todo}>. \\
\text{Lemma L_eq P H f : Lm P H (Li f) = H f. }<\text{todo}>.
\end{align*}
\]

Now, consider the recursive scheme for \text{lambda} considering that each image of \(f\) is structurally smaller than \(\text{Lam f}\).

4- Introduce a parameter \text{rec_lambda} encoding this recursive scheme.

5- Show that it is inconsistent.
3 Termination of fixpoints

Are the following fixpoints well-formed? explain why?

```
Fixpoint leq (n p: nat) {struct n} : bool :=
  match n, p with
  | O, _ -> true
  | S _, O -> false
  | S n', S p' -> leq n' p'
end.
```

```
Definition exp (p:nat) :=
  (fix f (n:nat) : nat :=
   match leq p n with | true => S 0 | false => f (S n) + f (S n) end)
0.
```

```
Definition ackermann1 := fix f (n m:nat) : nat :=
  match n, m with
  | O, _ => S m
  | S n', 0 => f n' (S O)
  | S n', S m' => f n' (f n m')
end.
```

```
Definition ackermann2 := fix f (n:nat) : nat -> nat :=
  match n with
  | O => S
  | S n' => fix g (m:nat) : nat :=
   match m with
   | O => f n' (S O)
   | S m' => f n' (g m')
   end
end.
```

4 The type W of well-founded trees

The type W of well-founded trees is parameterised by a type A and a family of types $B:A->Type$. It has only one constructor and is defined by:

```
Inductive W (A:Type) (B:A -> Type) : Type :=
  node : forall (a:A), (B a -> W A B) -> W A B.
```

The type A is used to parameterised the nodes and the type $B a$ give the arity of the node parameterised by a.

1. Give the type of dependent elimination for type W on sort $Type$.

2. In order to encode the type nat of natural numbers with O and S, we need two types of nodes. We take $A = bool$. The constructor O corresponds to $a = false$, it does not expect any argument so we take $B false=empty$. The constructor S corresponds to $a = true$, it takes one argument, we define $B true=unit$. Using this encoding, give the terms corresponding to nat, O et S.

3. Propose an encoding using W for the type $tree$ of binary trees parameterised by a type of values V, which means that we have a constructor $leaf$ of type $tree V$ and a constructor bin of type $tree V -> V -> tree V -> tree V$. Define the type and its constructors using this encoding.

4. Given a variable n of type nat, build two functions f_1 and f_2 of type $unit -> nat$ such that $\forall x:unit, f_i x=n$ is provable but such that f_1 and f_2 are not convertible.

5. Which consequence does it have on the encoding of nat using W?