1 Basic inductive definitions

1.1 Definitions by case-analysis

We recall the definition of booleans in the prelude as an inductive type with two constant constructors:

\[
\text{Inductive } \text{bool : Type := true : bool } | \text{false : bool.}
\]

1- Define boolean negation \(\neg b\) and boolean conjunction \(\land b\).

2- Detail the normalisation steps of expressions \((\text{fun } x:\text{bool } \rightarrow \neg b \ (\land b \ x \ x))\) and \((\text{fun } x:\text{bool } \rightarrow \neg b \ (\land b \ x \ false))\). Use the command \texttt{Eval compute in <term>}, to obtain the normal form and check your answers. What is remarkable?

1.2 Strong elimination and dependent match

Let \(t_1\) and \(t_2\) be two arbitrary terms of type \(T_1\) and \(T_2\). We would like to write a function \(g\) such that \(g \ true\) yields \(t_1\) and \(g \ false\) yields \(t_2\).

Is the following function correct? Why?

\[
\text{Definition } g (b:bool) := \text{match } b \text{ with true } \rightarrow t_1 \ | \ false \rightarrow t_2 \ \text{end.}
\]

The above definition can be fixed by writing a \texttt{return} clause:

\[
\text{Definition } g (b:bool) := \text{match } b \text{ return <todo> with true } \rightarrow t_1 \ | \ false \rightarrow t_2 \ \text{end.}
\]

Now we want to write a variant of the above by reversing the true and false cases:

\[
\text{Definition } g (b:bool) := \text{match } \neg b \text{ as <todo> return <todo> with true } \rightarrow t_1 \ | \ false \rightarrow t_2 \ \text{end.}
\]

Of course, a \texttt{return} clause is needed, but since the destructed object is not just a variable, an \texttt{as} clause is also needed to assign a name to the destructed object. This name can be used in the \texttt{return} clause.

\[
\text{Definition } g (b:bool) := \text{match } \neg b \text{ as <todo> return <todo> with true } \rightarrow t_1 \ | \ false \rightarrow t_2 \ \text{end.}
\]

1.3 Logical connectives

Observe how the logical connectives \(\land, \lor, \text{ex}, \text{eq}\) and their induction schemes are defined in the standard library of Coq.

1.4 Even numbers

Consider the definition of even numbers

\[
\text{Inductive } \text{even : nat } \rightarrow \text{Prop :=}
\]

| even0 : even 0
| evenS n : even n \rightarrow even (S (S n)).

Prove:

Lemma even_is_double : forall n, even n -> exists m, n=m+m.

by induction on (even n).

The above lemma can also be proven by induction on n. The proof is harder as the straightforward induction does not work. Observe how in the induction step, the induction cannot be used as it would require that the predecessor of an even number is also even.

One solution is to prove the property for n and S n at the same time:

Lemma even_is_double' : forall n,
{even n -> exists m, n=m+m} \(\land \) {even (S n) -> exists m, n=S(m+m)}.

Prove this lemma.

2 Recursive types

Consider the definition of lists (already in the prelude):

Require Import List.
Inductive list (A : Type) : Type :=
 nil : list A | cons : A -> list A -> list A

2.1 Proofs by structural induction

1- Implement a function belast : nat -> list nat -> list nat that drops the last element of a list:
 - belast x nil = nil
 - belast x (cons y l)= cons x (belast y l)

2- Show the following statement:

Lemma length_belast (x : nat) (s : list nat) : length (belast x s) = length s.

3- Implement a function skip : list nat -> list nat such that removes from a list items at positions that are odd, e.g:
 - skip (cons x (cons y (conz z nil)))= cons y nil

4- Show the following statement:

Lemma length_skip :
 forall l, 2 * length (skip l) <= length l.

Again, a straightforward induction on l does not work since skip makes recursive calls on the tail of the tail of the list (and not its tail). Another solution is to use the tactic fix hyp n that allows to prove a property (or inhabit a type) by adding an hypothesis hyp which has the same type as the original goal. The number n indicates which argument of the function is the inductive object which size decreases along the recursive calls. Here n=1 because the list is the first argument. The hypothesis hyp can only be called on lists that are a suffix of list l.

2.2 Dependent types, recursively

The Coq prelude defines the binary product, the unit type and the type of natural numbers:

Inductive prod (A B : Type) : Type := pair : A -> B -> prod A B.
Inductive unit : Type := tt : unit.
Construct an expression \(\text{prodn} : \text{Type} \to \text{nat} \to \text{Type} \) which builds the n-ary product of a given type \(A \): (i.e. \(\text{prodn} A n \) is \(A \times \ldots \times A \) \(n \) times)). The definition will be by recursion on \(n \).

Note that there exists a Gallina command \textbf{Fixpoint} \(f \) \((x : \text{I}) : \text{ty} \) := \text{def}. which is equivalent to \textbf{Definition} \(f \) \((x : \text{I}) := \text{fix} f (x : \text{I}) : \text{ty} := \text{def} \).

Give an expression \(\text{length} : \forall A, \text{list} A \to \text{nat} \) which computes the length of a list.

Give an expression \(\text{embed} : \forall A \ (l : \text{list} A), \text{prodn} A \ (\text{length} \ l) \) which translates a list into a n-uple.