MPRI 2-7-2: Proof Assistants

Bruno Barras, Matthieu Sozeau

Sep 13, 2019
Goals

- Learn the basics of using Coq
 - Specification language (Gallina)
 - Modelization
 - Tactics

- Study the underlying theory (Type Theory)
 - Formalisms: Calculus of Inductive Constructions
 - Features: inductive types.

- More in-depth theory: take 2-7-1!
 - Meta-theory: extraction, strong normalization, paradoxes.
Introduction to the module

Organization

Lectures:
- 8 lectures of 3h
- Teachers: Bruno Barras (4), Matthieu Sozeau (4)

Evaluation:
- A written exam (3h). Coef:2
- 1 exercise/project (modelization and proofs in Coq)
 Written report, Coef: 1
Program (provisional)

- 13/9 (BB): First-order logic, λ-calculus, Simple types
- 20/9 (BB): Dependent types, Universes
- 27/9 (BB): CIC and general inductive types.
- 11/10 (MS): Advanced inductive types.
 exercise handout
- 18/10 (MS): Modelization of mathematical structures.
- 25/10 (MS): Proof by reflexion : boolean, computational.
- 8/11 (MS): Homotopy Type Theory. exercise due
Installing Coq

- Linux: packages of major distributions, or opam
- Mac: precompiled binaries (dmg) or opam
- Windows: precompiled binaries (installer)

Beginners are invited to use CoqIDE.

Using ProofGeneral (emacs) is also possible.
Learning Coq

This module is just an initiation. See http://coq.inria.fr/documentation for other methods:

- Coq’Art (Y. Bertot, P. Casteran)
- Software Foundations (B. Pierce)
- Certified Programming with Dependent Types (A. Chlipala)
- ...

Help (see http://coq.inria.fr/community):

- Wiki: cocorico, list: coq-club
- Forums: Discourse, Gitter, Stack Overflow
- Video tutorials (A. Bauer)
Overview

1. Proof Assistants
2. First-order logic
3. Untyped λ-calculus
4. Simply typed λ-calculus
Proofs on computers

Doing proofs with computers requires:

- A language to represent objects and operations: integers, functions, sets, …
- A language to represent properties of objects: first-order logic, higher-order logic.
- A method to construct/verify proofs: basic rules + a way to mechanize them.

Approach based on higher-order logic:

- typed lambda-calculus for representing objects and properties
 ≠ set theory (first order)
- tactics or well-typed proof terms for building and verifying proofs.
Examples of case studies

In the Coq proof assistant but analogous examples in Isabelle/HOL

- Formalisation of semantics of JavaCard, certification of security functionalities (Thales, Trusted Labs)
- Proof of the 4-colors theorem (G. Gonthier, B. Werner - Inria - Microsoft Research)
- Proof of the Feit-Thompson theorem (G. Gonthier et al. - Inria - Microsoft Research)
- Development of a certified C compiler producing optimized code (Compcert, X. Leroy)
- Formalisation and reasoning on floating-point number arithmetic (S. Boldo, G. Melquiond . . .)
- Development of certified static analysers (D. Pichardie)
- . . .
Terms: \(x \mid f(t_1, \cdots, t_n) \) (\(f \) function symbol)

Formulae:
\(P(t_1, \cdots, t_n) \mid \top \mid \bot \mid A \land B \mid A \lor B \mid A \Rightarrow B \mid \forall x. A(x) \mid \exists x. A(x) \)
(\(P \) predicate symbol)

Natural deduction rules: intro/elim rules

\[
\begin{align*}
\frac{A \in \Delta}{\Delta \vdash A} \quad & (Ax) \\
\frac{\Delta \vdash \top}{\Delta \vdash C} \quad & (\top - E) \\
\end{align*}
\]
First-order: natural deduction rules

Conjunction
\[
\frac{\Delta \vdash A \quad \Delta \vdash B}{\Delta \vdash A \land B} (\land - I) \quad \frac{\Delta \vdash A \land B}{\Delta \vdash A} (\land - E_1) \quad \frac{\Delta \vdash A \land B}{\Delta \vdash B} (\land - E_2)
\]

Implication
\[
\frac{\Delta A \vdash B}{\Delta \vdash A \Rightarrow B} (\Rightarrow - I) \quad \frac{\Delta \vdash A \Rightarrow B \quad \Delta \vdash A}{\Delta \vdash B} (\Rightarrow - E)
\]

Disjunction
\[
\frac{\Delta \vdash A}{\Delta \vdash A \lor B} (\lor - I_1) \quad \frac{\Delta \vdash B}{\Delta \vdash A \lor B} (\lor - I_2)
\]
\[
\frac{\Delta \vdash A \lor B \quad \Delta A \vdash C \quad \Delta B \vdash C}{\Delta \vdash C} (\lor - E) \quad \left(\frac{\Delta \vdash A \lor \neg A}{\Delta \vdash C} (EM)\right)
\]
First-order: natural deduction rules

Universal quantification

\[
\frac{\Delta \vdash A(x) \quad x \text{ fresh}}{\Delta \vdash \forall x. A(x)} (\forall - I) \quad \frac{\Delta \vdash \forall x. A(x)}{\Delta \vdash A(t)} (\forall - E)
\]

Existential quantification

\[
\frac{\Delta \vdash A(t)}{\Delta \vdash \exists x. A(x)} (\exists - I) \quad \frac{\Delta \vdash A(x) \vdash C \quad x \text{ fresh}}{\Delta \vdash \exists x. A(x) \vdash C} (\exists - E)
\]
First-order logic in Coq

Syntax:

<table>
<thead>
<tr>
<th>FOL</th>
<th>Coq</th>
<th>Intro-rule</th>
<th>Elim-rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(t_1, \ldots, t_n)$</td>
<td>$P ; t_1 \ldots ; t_n$</td>
<td>split</td>
<td>destruct <hyp></td>
</tr>
<tr>
<td>$A \land B$</td>
<td>$A ; & ; B$</td>
<td>left, right</td>
<td>destruct <hyp></td>
</tr>
<tr>
<td>$A \lor B$</td>
<td>$A ; \lor ; B$</td>
<td>trivial</td>
<td>contradiction</td>
</tr>
<tr>
<td>\top, \bot</td>
<td>True, False</td>
<td>intro</td>
<td>apply</td>
</tr>
<tr>
<td>$A \Rightarrow B$</td>
<td>$A ; \rightarrow ; B$</td>
<td>intro</td>
<td>apply</td>
</tr>
<tr>
<td>$\forall x. A(x)$</td>
<td>forall x, A</td>
<td>intro</td>
<td>destruct <hyp></td>
</tr>
<tr>
<td>$\exists x. A(x)$</td>
<td>exists x, A</td>
<td>exist <term></td>
<td></td>
</tr>
</tbody>
</table>
Untyped λ-calculus: genesis

Church (1930s) proposed a notation for logical formulae:

- extends first-order terms with binders
 \[\Lambda ::= x \mid t_1 t_2 \mid \lambda x. t \mid c \] where c is a constant symbol
- A computation rule: β-reduction
 \[(\lambda x. t_1) t_2 \rightarrow_\beta t_1[t_2/x] \]
 capture once and for all the binding constructions.
- Formulae equal up to β are identified.

Note: not seen at this point as a universal computational model (such as Turing machines)
A notation for higher-order logic

Used as a notation for **higher-order logic** (for both formulae and terms):

- **Symbols**: \land, \lor, \Rightarrow, \top, \bot, \neg, \forall, \exists. ($A \land B$ written $\land A B$)

- **λ-abstractions in formulae**:
 \[\forall x. P(x) \text{ is written } \forall (\lambda x. P(x)) \]

- **λ-abstractions in terms**: functions, comprehension scheme
 \[\lambda x. P(x) \text{ denotes the “set” (or collection) of all individuals (e.g. sets) that satisfy } P, \text{ and application } (t_1 t_2) \text{ denotes membership } t_2 \in t_1. \]

Inference rules (natural deduction style, Δ set of assumptions):

\[
\begin{align*}
\Delta \vdash P t & \quad \Delta \vdash \exists P \quad \Delta; (P x) \vdash C \\
\hline
\Delta \vdash \exists P & \quad \Delta \vdash C (x \text{ fresh})
\end{align*}
\]
A paradox (Kleene-Rosser, 1935)

As in naive set theory, we can build the “set of sets not belonging to themselves”: \(\delta = \lambda x. \neg (x x) \)

... and whether it belongs to itself is paradoxical

\[
\delta \delta \rightarrow_{\beta} \neg (\delta \delta)
\]

Exercise: prove \(\vdash \bot \), without using excluded-middle (\(A \lor \neg A \)).
Simply-typed \(\lambda\)-calculus

Church (1940) fixed the paradox by forbidding terms that do not follow a typing discipline.

Types are either

- one of the base types (to be defined),
- or \(\tau \rightarrow \tau'\) the type of functions from \(\tau\) to \(\tau'\).

Typing rules \((\Gamma \vdash t : \tau)\)

\[
\begin{align*}
(x : \tau) & \in \Gamma & & \Gamma \vdash t : \tau \rightarrow \tau' & & \Gamma \vdash u : \tau \\
\Gamma \vdash x : \tau & & \Gamma \vdash tu : \tau' & & \Gamma ; (x : \tau) \vdash t : \tau' \\
\end{align*}
\]

\[
\Gamma \vdash \lambda x : \tau . t : \tau \rightarrow \tau'
\]
Church’s Higher-Order Logic (HOL)

Church’s Higher-Order Logic (HOL) uses two base types:
- \(\iota \) the type of *individuals* (e.g. sets)
- \(\omicron \) the type of logical formulae (propositions)

Constants:
\[
\top \perp : \omicron \quad \neg : \omicron \to \omicron \quad \Rightarrow \quad \land \lor : \omicron \to \omicron \to \omicron \\
\forall_T \exists_T : (T \to \omicron) \to \omicron \quad =_T : T \to T \to \omicron
\]

(first-order quantifiers are \(\forall_\iota \) and \(\exists_\iota \))
Metatheory of HOL

\[\delta = \lambda x. \neg (x \ x) \text{ cannot be well-typed (since } \tau \neq (\tau \to \tau') \) \]

HOL is a consistent logic: \(\not \vdash \bot \)

Proof assistants HOL (HOL4 HOL-Light) and Isabelle/HOL use variants of this formalism.
Next week:
- Dependent types
- Universes