Asymptotic Consensus and Averaging Algorithms

Exercise 1. Let \mathcal{S}_n be the set of stochastic matrices of size n, and let $\mathcal{M} \subseteq \mathcal{S}_n$ be a non-empty and finite subset of \mathcal{S}_n such that any finite product of matrices in \mathcal{M} is ergodic. We define the equivalence relation \sim in \mathcal{S}_n by:

$$A \sim B \iff G(A) = G(B),$$

where $G(A)$ and $G(B)$ are the graphs associated to A and B, respectively.

1. Show that the relation \sim is preserved by right (or left) multiplication, i.e.,

$$\forall A, B, M \in \mathcal{S}_n, \quad A \sim B \Rightarrow AM \sim BM.$$

2. Suppose that A and B are two equivalent matrices, i.e., $A \sim B$. Prove that $N(A) = 1$ if and only if $N(B) = 1$.

Let $A_0, A_1, \ldots, A_{n^2}$ a sequence of $n^2 + 1$ matrices in \mathcal{M}.

3. Show that there exist two indices k and ℓ, $0 \leq k < \ell \leq n^2$, such that $A_{n^2} \cdots A_k \sim A_{n^2} \cdots A_\ell$.

4. Prove that $A_{n^2} \cdots A_0$ is a scrambling matrix, i.e., $N(A_{n^2} \cdots A_0) < 1$.

5. What extension of Corollary 6 (cf. the course notes) have you just proved?

Exercise 2. A stochastic matrix A is said to be doubly stochastic if its transpose A^T is also stochastic.

1. Define a class of stochastic matrices that are all doubly stochastic.

2. What is the Perron vector of a doubly stochastic matrix?

Exercise 3. Let $G = ([n], E)$ be a symmetric and connected graph, and let A be the stochastic matrix such that

$$A_{i,j} = 1/d_i,$$

where $d_i = d_i^- = d_i^+$ is the in-degree (or outdegree) of the node i in G.

1. Show that the i-th entry of the Perron vector of A is equal to $\pi_i = d_i/|E|$.

Let q_1, \ldots, q_n be n integers such that $q_i \geq d_i$, and let B the $n \times n$ matrix defined by

$$A_{i,j} = 1/q_i.$$

2. Verify that B is a stochastic matrix.

3. What is the Perron vector of B? What property do the FixedWeight and the Metropolis algorithms share?
Exercise 4. Let us consider the \textit{m-butterfly graph} depicted in Figure 1: It has \(n = 2m \) nodes and consists of two isomorphic parts that are connected by a bidirectional edge. We list the edges between the nodes 1, 2, \ldots, \(m \), which also determine the edges between the nodes \(m+1, m+2, \ldots, 2m \) via the isomorphism \(\bar{p} = 2m - p + 1 \). The edges between the nodes 1, 2, \ldots, \(m \) are: (a) the edges \((p+1,p)\) for all \(p \in [m-1] \) and (b) the edges \((1,p)\) for all \(p \in [m] \). In addition, it contains a self-loop at each node and the two edges \((m,\bar{m})\) and \((\bar{m},m)\). Hence the \(m \)-butterfly graph is strongly connected.

Let \(A \) be the stochastic matrix such that
\[
A_{i,j} = 1/d_i^+,
\]
where \(d_i^- \) is the in-degree of the node \(i \) in the Butterfly graph.

1. Verify that \(A \) is an ergodic matrix and its Perron vector is given by
\[
\pi_1 = \frac{1}{5}, \quad \pi_p = \frac{3}{5 \cdot 2^p} \text{ for } p \in \{2, \ldots, m-1\} \quad \text{and} \quad \pi_m = \frac{3}{5 \cdot 2^{m-1}}.
\]

2. Compare this Perron Vector with the one in Exercise 3, question 1.

Exercise 5. An averaging algorithm is said to be \(\alpha \)-\textit{safe} for a dynamic network \(G \) if, in every execution of this algorithm with the communication network \(G \), all positive weights are at least equal to \(\alpha \).

1. We consider an \(\alpha \)-safe averaging algorithm in a dynamic network \(G \), and an execution of this algorithm with \(G \). Prove that at every round \(t \) and for every agent \(i \), the output variable \(x_i \) satisfies
\[
(1 - \alpha)m_i(t-1) + \alpha M_i(t-1) \leq x_i(t) \leq (1 - \alpha)M_i(t-1) + \alpha m_i(t-1),
\]
where \(m_i(t-1) = \min_{j \in I_{n_i}(t)} x_j(t-1) \), \(M_i(t-1) = \max_{j \in I_{n_i}(t)} x_j(t-1) \), and \(I_{n_i}(t) \) denotes the set of \(i \)'s incoming neighbors in \(G(t) \).

2. Does the following inequalities:
\[
(1 - \alpha)m(t-1) + \alpha M(t-1) \leq x_i(t) \leq (1 - \alpha)M(t-1) + \alpha m(t-1),
\]
where \(m(t-1) = \min_{j \in [n]} x_j(t-1) \), \(M(t-1) = \max_{j \in [n]} x_j(t-1) \), hold?
Let $G = ([n], E)$ be a symmetric and connected graph.

3. Is the EqualNeighbor algorithm α-safe in G? For what real number α?

4. Same questions for the FixedWeight algorithm and the Metropolis algorithm.