Multi-Party Computation

Hoeteck Wee

May 14, 2018

Today MPC with information-theoretic / unconditional security

• “everlasting” security, no computational assumptions, quantum-safe
• very efficient, simple field arithmetic, no exponentiations (cf. Unbound Tech, …)
• requires honest majority, or trusted set-up

\((n,t)\)-threshold secret sharing

A secret \(s\) is shared among \(n\) parties:

• (reconstruction) any subset of \(t+1\) parties (or more) can recover \(s\)
• (\(t\)-privacy) any subset of \(t\) parties has no information about \(s\)

Shamir: Suppose \(s \in \mathbb{F}_q\) and \(q \geq n + 1\).

• random polynomial \(p\) of degree \(t\) s.t. \(p(0) = s\), party \(i\) gets \(p(i)\).
• can compute \(\lambda_1, \ldots, \lambda_{t+1} \in \mathbb{F}_q\) s.t. \(p(0) = \sum_{i=1}^{t+1} \lambda_i p(i)\)
• \((p(1), \ldots, p(t))\) is identically distributed to the uniform distribution over \(\mathbb{F}_q^t\).

Preliminaries Fix a prime \(q\). Are the following distributions identically distributed to the uniform distribution?

1. \((u_1, u_1 + u_2), \) where \(u_1, u_2 \leftarrow \mathbb{Z}_q\)
2. \((u_1 + u_2, u_2 + u_3, u_3 + u_1), \) where \(u_1, u_2, u_3 \leftarrow \mathbb{Z}_q\)
3. \((u_1 + u_2, u_2 + u_3, u_3 + u_4, u_4 + u_1), \) where \(u_1, u_2, u_3, u_4 \leftarrow \mathbb{Z}_q\)

Multi-Party Computation (MPC) \(n\) parties \(P_1, \ldots, P_n\) want to jointly evaluate \(f(x_1, \ldots, x_n)\)

• input: \(x_i\) is the private input of \(P_i\)
• output: everyone learns \(f(x_1, \ldots, x_n)\)
• privacy: … and nothing else about the other inputs
MPC: security

- honest-but-curious: all parties follow the protocol honestly
 - do not change their inputs, do not abort pre-maturely
- t-privacy: if t parties collude, they learn nothing beyond their inputs and the output
 - \text{view}(P_i) = \text{input, randomness, messages received}
 - view of any t parties depend only on their inputs & output
 - exists “simulator” \text{sim} s.t. \forall S \subseteq [n], |S| \leq t and \forall x_1, \ldots, x_n

\text{view}(P_i : i \in S) and \text{sim}((x_i : i \in S), f(x_1, \ldots, x_n))

are identically distributed.

Examples for 1-privacy

1. \(n = 2, f(x_1, x_2) = x_1 + x_2 \) over \(\mathbb{Z}_q \)
 - \(P_i \) sends \(x_i \) to \(P_j \) for all \(i \neq j \)
 - each party computes \(x_1 + x_2 \)
2. \(n = 2, f(x_1, x_2) = x_1 \cdot x_2 \mod q \) over \(\mathbb{F}_q \)
 - \(P_i \) sends \(x_i \) to \(P_j \) for all \(i \neq j \)
 - each party computes \(x_1 \cdot x_2 \)

Examples for 1-privacy

3. \(n = 3, f(x_1, x_2, x_3) = x_1 + x_2 + x_3 \mod q \)
 - (round 1) \(P_1 \) picks \(r \sim \mathbb{Z}_q \) and sends \(a_1 = x_1 + r \mod q \) to \(P_2 \)
 - (round 2) \(P_2 \) sends \(a_2 = a_1 + x_2 \mod q \) to \(P_3 \)
 - (round 3) \(P_3 \) sends \(a_3 = a_2 + x_3 \mod q \) to \(P_1 \)
 - (round 4) \(P_1 \) sends \(a_4 = a_3 - r \mod q \) to \(P_2, P_3 \)

- \textbf{correctness}. \(a_3 = x_1 + x_2 + x_3 + r \mod q \)
- 1-privacy.
 - \text{view}(P_1) = (x_1, r, x_1 + x_2 + x_3 + r)
 - \text{view}(P_2) = (x_2, x_1 + r, x_1 + x_2 + x_3)
 - \text{view}(P_3) = (x_3, x_1 + x_2 + r, x_1 + x_2 + x_3)

- 2-privacy?
Examples for 1-privacy

4. \(n = 4, f(x_1, x_2, x_3, x_4) = x_1 + x_2 + x_3 + x_4 \mod q \)
 - (round 1) \(P_1 \) picks \(r \in \mathbb{Z}_q \) and sends \(a_1 = x_1 + r \mod q \) to \(P_2 \)
 - (round 2) \(P_2 \) sends \(a_2 = a_1 + x_2 \mod q \) to \(P_3 \)
 - (round 3) \(P_3 \) sends \(a_3 = a_2 + x_3 \mod q \) to \(P_4 \)
 - (round 4) \(P_4 \) sends \(a_4 = a_3 + x_4 \mod q \) to \(P_1 \)
 - (round 5) \(P_1 \) broadcasts \(a_5 = a_4 - r \mod q \).

- correctness? 1-privacy?
- 2-privacy?
 - \(\text{view}(P_1, P_2) = (x_1, r, x_1 + \cdots + x_4 + r, x_2, x_1 + r, ...) \)
 - \(\text{view}(P_1, P_3) = (x_1, r, x_1 + \cdots + x_4 + r, x_3, x_1 + x_2 + r, \ldots) \)

MPC for honest majority (BGW)

(Ben-Or, Goldwasser, Wigderson, 1988) \(n \) players and \(t \)-privacy. Fix a field \(\mathbb{F}_q \) s.t. \(q > n \).

Three results:

1. \(f \) is any polynomial of degree \(d \) and \(n \geq dt + 1 \)
2. \(f \) is a polynomial of any degree and \(n \geq 2t + 1 \)
3. (malicious) \(f \) is a polynomial of any degree and \(n \geq 3t + 1 \)

- Degree. \(f(x_1, x_2, x_3) = x_1^2 x_2 + x_1 x_3 + x_2 \) has degree 3.
- Circuits. Boolean circuits of depth \(D \) are a special case of polynomials of degree \(2^D \). Can model \(f \) as “arithmetic” circuits over \(\mathbb{F}_q \) where the gates are + and \(\times \) (fan-in two).
- Round complexity. Protocol 1 is constant-round, whereas 2, 3 are \(O(\log d) \) rounds.

MPC protocol 1

Goal. securely compute polynomial \(f \) of degree \(d \) over \(\mathbb{F}_q \)

- (round 1) \(P_i \) shares \(x_i \) using polynomial \(p_i \) of degree \(t \), i.e. sends \(a_{i,j} = p_i(j) \) to \(P_j \).
- (round 1) i.e., \(P_i \) receives \(p_1(i), \ldots, p_n(i) \).
- (round 2) \(P_i \) broadcasts \(b_i = f(p_1(i), \ldots, p_n(i)) \).

- correctness. define \(F(X) := f(p_1(X), \ldots, p_n(X)) \)
 - claim 1: \(F(0) = f(x_1, \ldots, x_n) \)
 - claim 2: \(F(i) = b_i \)
 - claim 3: \(F \) has degree at most \(dt \)
 - recover \(F(0) \) via interpolation at \(n \geq dt + 1 \) points

- \(t \)-privacy. how to simulate \(b_1, \ldots, b_n \) or \(F \)?
 - e.g. \(n = 2, t = 1 \) and \(F(t) = (u_1 t + x_1)(u_2 t + x_2) \)
MPC protocol 1

Goal. securely compute polynomial f of degree d over \mathbb{F}_q

- (round 1) P_i shares x_i using polynomial p_i of degree t, i.e. sends $a_{i,j} = p_i(j)$ to P_j.
- (round 1) P_1 shares 0 using polynomial p_0 of degree dt, i.e. sends $\tilde{a}_j = p_0(j)$ to P_j.
- (round 2) P_i broadcasts $b_i = f(p_1(i), \ldots, p_n(i)) + p_0(i)$.

• correctness. define $F(X) := f(p_1(X), \ldots, p_n(X)) + p_0(X)$
 - $F(0) = f(x_1, \ldots, x_n), F(i) = b_i$ and F has degree at most dt

• t-privacy. fix $S \subset [n], |S| \leq t$
 - F random polynomial of deg dt s.t. $F(0) = f(x_1, \ldots, x_n)$
 - pick $\{a_{i,j} : i \in [n], j \in S\}$ at random
 - compute $\tilde{a}_j = F(j) - f(a_{1,j}, \ldots, a_{n,j})$
 - note. need all players to contribute shares of 0.

MPC protocol 2

• Goal. reduce requirement on $n \geq dt + 1$ to $n \geq 2t + 1$

• Idea. look at each addition and multiplication in f
 - start with shares of x_1, \ldots, x_n
 - if addition: just add the shares, yields polynomial of degree t
 - if multiplication: multiply the shares, yields polynomial of degree $2t$, then do degree reduction

• Degree reduction.
 - input: P_i holds $F(i)$ where F has degree $2t$
 - output: P_i holds $G(i)$ where G has degree t and $G(0) = F(0)$
 - key idea:
 \[G(0) = \sum_{i=1}^{2t+1} \lambda_i F(i) \]
 - run protocol 1 for $d = 1$ to compute $f(x_1, \ldots, x_n) = \sum_{i=1}^{2t+1} \lambda_i x_i$

Private simultaneous messaging

PSM (Feige-Kilian-Naor, Ishai-Kushilevitz). goal: securely compute f

• n parties P_1, \ldots, P_n share private randomness r
• input: x_i is the private input of P_i
• output: referee learns $f(x_1, \ldots, x_n)$ (doesn’t see r)
• non-interactive: P_i sends a single message to referee
security. exists \textbf{sim} s.t. \(\forall x_1, \ldots, x_n \)

\[(P_1(x_1; r), \ldots, P_n(x_n; r)) \text{ and } \textbf{sim}(f(x_1, \ldots, x_n)) \]

are identically distributed.

PSM: examples

\(f(x_1, \ldots, x_n) = x_1 + \cdots + x_n \text{ over } \mathbb{Z}_q \)

- shared randomness is \(r_1, \ldots, r_n \leftarrow \mathbb{R} \mathbb{Z}_q \)
- \(P_i \) sends \(x_i + r_i \), and \(P_1 \) also sends \(r_1 + \cdots + r_n \)
- \textbf{sim}: \(P_i \) sends \(r'_i \) and ...

PSM: examples

\(P_1 \) holds \(i \in [n] \), \(P_2 \) holds \(D_1, \ldots, D_n \in \{0, 1\} \), referee learns \(D_i \)

- \textbf{Attempt 1}:
 - shared randomness is random permutation \(\pi \)
 - \(P_1 \) sends \(i' = \pi(i) \) and \(P_2 \) sends \(D'_j = D_{\pi^{-1}(j)} \)
 - referee outputs \(D'_{i'} = D_i \)
- \textbf{Attempt 2}:
 - shared randomness is \(\pi \) and \(r_1, \ldots, r_n \)
 - \(P_1 \) sends \(i' = \pi(i) \) and \(P_2 \) sends \(D'_j = D_{\pi^{-1}(j)} \oplus r_j \)
 - referee outputs \(D'_{i'} = D_i \oplus r_{\pi(i)} \)
 - \textbf{fix}. \(P_1 \) also sends \(r_{\pi(i)} \). how to simulate?