Parisian Master of Research in Computer Science
Master Parisien de Recherche en Informatique (MPRI)

Cours 2.18.2: Shared-Memory Distributed Computing/Algorithmique distribuée avec mémoire partagée (24h, 3ECTS)

Enseignants pour l'année 2024-25 / Teachers in charge for 2024-25

* Carole Delporte (IRIF, Université Paris Cité) * Lelia Blin (IRIF, Université Paris Cité)

Sommaire / Summary

Distributed computing concerns designing and understanding algorithms for sets of independent computing units that have to communicate to coordinate their activities. The problem space of distributed computing is vast and it would be impossible to undertake an exhaustive study within a single course. Even a small-scale distributed system may expose an amazingly complex behavior that would make it very challenging to formally reason about. But we have to meet the challenge! Due to inherent limitations of centralized computing, all computing systems nowadays is becoming distributed, ranging from Internet-scale services to multiprocessors. Therefore, understanding the principles of distribution and concurrency is indispensable in all aspects of designing and engineering modern computing systems. The main challenge here is to balance correctness of the system's executions with its availability and efficiency, in the presence of possible misbehavior of the system components and the environment (such as faults and asynchrony).

This course discusses how to design distributed algorithms, reason about their correctness, and derive matching complexity bounds. The primary focus of the module is on understanding of the foundations of distributed computing. This course focuses on the models in which computing units communicate through a shared memory. The related course 2.18.1 deals with distributed algorithms for synchronous networks.

Langue/Language

Lectures are given in French.

Contenu/Contents

P1, Monday, starting from 23/09/2024, 16h15-19h15-15h45, Bat. Sophie Germain, Room 1002.

In a first part, we discuss nonblocking and wait-free implementation of shared-memory abstractions, the fundamental problem of consensus, and the notion of a universal construction.

  • Introduction, theory and practice of distributed systems
  • Safe, regular, and atomic registers. Atomic snapshot
  • Atomic-object implementations
  • Herlihy's hierarchy of atomic objects
  • Consensus universality
  • t-resilience
  • Byzantine failures

In a second part, we discuss of the self stabilizing approach to tolerates failures

  • Introduction to self-stabilization: faults, models, schedulers
  • Dijkstra's Token ring algorithm
  • Self-stabilizing algorithms for coloration
  • Self-stabilizing Tree construction
  • Unisson
  • Self-stabilizing Leader election (mutual exclusion)

Planning prévisionnel/Preliminary schedule

23/09/2024 Introduction, Read-write shared memory basics, snapshot
30/09/2024 Objects, Linearizability
7/10/2024 Hiérarchie, universalité, impossibilité du consensus
14/10/2024 k-set agreement, t-resilience, byzantine failures Devoir
21/10/2024 Introduction to self-stabilization, Dijkstra's Token ring algorithm PDF, PDF
28/10/2024 Self-stabilizing Tree construction PDF
04/10/2024 Unisson PDF
11/11/2024 Férié
18/11/2024 Self-stabilizing Leader election (mutual exclusion) PDF
02/12/2024 Examen

Contrôle des connaissances/ knowledge control

Un devoir après les 4 premieres séances, un examen le 2 décembre 2024

Note finale = max (examen, 3/4 examen+1/4 devoir)

Pré-requis / Prerequisites

None, though some maturity in mathematical reasoning and algorithms is expected.

Livres conseillés / Literature

* Karine Altisen, Stéphane Devismes, Swan Dubois, Franck Petit: Introduction to Distributed Self-Stabilizing Algorithms. Synthesis Lectures on Distributed Computing Theory, Morgan & Claypool Publishers 2019

* Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and Advanced Topics. John Wiley and Sons, Inc.

* Shlomi Dolev: Self-Stabilization. MIT Press 2000, ISBN 0-262-04178-2

* R. Guerraoui and P. Kuznetsov. Algorithms for concurrent systems. PPUR, 2019

* Maurice Herlihy and Nir Shavit (Victor Luchangco, Michael Spear). The art of multiprocessor programming. Morgan Kaufmann 2008 (2020).

* M. Herlihy, D. Kozlov, S. Rajsbaum: Distributed Computing Through Combinatorial Topology Morgan Kaufman 2013.

* Michel Raynal: Concurrent Programming: Algorithms, Principles, and Foundation Springer

Liste cohérentes de cours sur la thématique ” Algorithmes et complexité” / Related Courses

Equipe pédagogique

* Carole Delporte (Professeur, IRIF, Université Paris Cite) * Lelia Blin (Professeure, IRIF, Université Paris Cité)

 
Universités partenaires Université Paris-Diderot
Université Paris-Saclay
ENS Cachan École polytechnique Télécom ParisTech
ENS
Établissements associés Université Pierre-et-Marie-Curie CNRS INRIA CEA