Parisian Master of Research in Computer Science
Master Parisien de Recherche en Informatique (MPRI)

Level 2 modules

Level 2 modules offer a specialised training constitutive of a true introduction to research; they require a good knowledge of the contents of the level 1 modules. Each level 2 full module is taught over the course of a semester, represents 75 student-hours (typically 50 contact hours and 25 hours of private study), and entitles students to 6 ECTS credits. Half modules are taught either 1.5h/week over the course of the semester or 3h/week over half the semester. Each such module represents 37.5 student-hours and entitles students to 3 ECTS credits.

At least twenty level 2 modules will be made available for the first semester exclusively. The MPRI's Executive Committee will set a list of level 2 modules each year; the modules thus selected will of course only be actually maintained if they attract a sufficient number of students. The level 2 modules will be taught preferably on the premises of the university of Paris 7. The table herebelow contains a list of titles and heads of level 2 modules as well as links to a description of each module.

List of level 2 modules

Courses marked with a (S) are suspended in the academic year 2014-2015.

Module Title Nb. H ECTS Period(s) Nb. Week H/Week Person(s) in charge Teaching LanguageBreakable
2.1 Logique linéaire et paradigmes logiques du calcul
Linear logic and logical paradigms of computation
48 6 1-2 16 3 R. Di Cosmo 3/4 French by default, 1/4 English
2.2Modèles des langages de programmation: domaines, catégories, jeux
Models of programming languages: domains, categories, games
48 6 1-2 16 3 P.-A. MellièsEnglish upon request
2.3 Concurrence
Concurrency
48 6 1-2 20 2.5 R. Amadio 1/4 English, 3/4 French Yes
2.4 Programmation fonctionnelle et systemes de types
Functional programming and type systems
48 6 1-2 20 2.5 D. Rémy French by default
2.5.1Démonstration automatique
Automated deduction
243 2 8 3 E. Contejean French by default
2.6Interprétation abstraite: application à la vérification et à l'analyse statique
Abstract interpretation: application to verification and static analysis
48 6 1-2 16 3 A. Miné English upon request
2.7.1Fondements des systèmes de preuves
Foundations of proof systems
243 1-2 16 1.5 G. Dowek English upon request
2.7.2Assistants de preuves
Proof assistants
24 3 2 8 3 B. Barras French by default
2.8.1Théorie non-séquentielle des systèmes distribués
Non-sequential theory of distributed systems
243 1 10 2.5 B. Bollig1/2 English upon request
1/2 French upon request
2.8.2Fondements des systèmes temps-réel et hybrides
Foundations of real time and hybrid systems
243 2 10 2.5 E. AsarinFrench by default
2.9.1Fondements mathématiques de la théorie des systèmes infinis
Mathematical foundations of the theory of infinite transition systems
243 1 8 3 A. FinkelFrench by default
2.9.2Vérification algorithmique des programmes
Algorithmic verification of programs
243 1 8 3 A. Bouajjani English upon request
2.10 Aspects algorithmiques de la combinatoire
Algorithmic aspects of combinatorics
486 1-2 20 2.5 G. Schaeffer French
2.11 (S)Complexité randomisée (long)
Randomness in complexity (long)
4861-2 16 3 F. Magniez English Yes
2.11.1Algorithmes probabilistes
Randomized algorithms
2431 8 3 N. Schabanel English upon request
2.11.2Complexité randomisée (court)
Randomness in complexity (short)
2431 8 3 I. Kerenidis English
2.12.1 Techniques en cryptographie et cryptoanalyse
Techniques in cryptography and cryptanalysis
2431-2 16 1.5 M. Abdalla English
2.12.2Algorithmes arithmétiques pour la cryptologie
Arithmetic algorithms for cryptology
243 1-2 16 1.5 F. Morain 1/3 English by default
2/3 English upon request
2.13.1Systèmes polynomiaux, calcul formel et applications
Polynomial systems, computer algebra and applications
243 2 8 3 J.-C. Faugère English upon request
2.13.2Codes correcteurs d'erreurs et applications à la cryptographie
Error correcting codes and applications to cryptography
243 1-2 16 1.5 A. Canteaut French by default
2.14.1Analyse géométrique des données
Computational geometry learning
243 1 10 2.5 J.-C. Boissonnat English upon request
2.15Analyse d'algorithmes
Analysis of algorithms
4861-2 16 3 M. Soria French
2.16Modélisation par automates finis
Finite automata modelling
486 1-2 16 3 T. Colcombet English upon request
2.17.1Fondements sur la modélisation des réseaux
Foundations of network models
243 2 10 2.5 J. Mairesse English upon request
2.18.1Algorithmique distribuée pour les réseaux
Distributed algorithms on networks
2431-2 16 1.5 P. Fraigniaud 1/2 French by default 1/2 English
2.18.2 (S)Algorithmique distribuée avec mémoire partagée
Distributed algorithms on shared memory
2431 8 3 C. Delporte French
2.19Méthodes informatiques pour la biologie systémique et synthétique
Computational methods for systems and synthetic biology
486 1-2 16 3 F. Fages French by default
2.20.1Techniques de théorie des jeux en informatique
Game theory techniques in computer science
243 1 8 3 W. Zielonka French
2.20.2Fondations mathématiques de la théorie des automates
Mathematical foundations of automata theory
243 1-2 16 1.5 J.-E. Pin English upon request
2.22 (S)Algorithmes efficaces en calcul formel
Efficient algorithms in computer algebra
4861-2 16 3 B. Salvy French by default Yes
2.23.1Systèmes synchrones
Synchronous systems
243 1 8 3 M. Pouzet English upon request
2.24.1Optimisation
Optimization
243 1 10 2.5 Ch. Durr English
2.26.1 (S) Logique, complexité descriptive et théorie des bases de données
Logic, descriptive complexity and database theory
24 3 1 8 3 L. Segoufin French by default
2.26.2 Gestion de données sur le web
Web data management
24 3 2 8 3 S. Abiteboul English upon request
2.27.1Structures informatiques et logiques pour la modélisation linguistique
Computational structures and logics for natural language modelling
243 1 8 3 S. Schmitz English upon request
2.29.1Algorithmique des graphes
Graph algorithms
243 1-2 16 1.5 M. Habib French by default
2.30Protocoles cryptographiques : preuves formelles et calculatoires
Cryptographic protocols: computational and symbolic proofs
486 1-2 16 3 H. Comon-Lundh English upon request Yes
2.31.1 (S)Algorithmique et complexité des problèmes de satisfaction de contraintes
Constraint Satisfaction Problems: algorithms and complexity
243 2 8 3 M. Hermann 1/2 English by default 1/2 English upon request
2.33.1 Théorie des calculs
Theory of computations
24 3 1 8 3 S. Perifel French
2.34.1 Informatique quantique et applications
Quantum information and applications
24 3 2 8 3 S. Laplante English upon request
2.35.1 (S) Programmation par contraintes
Constraint programming
24 3 1 8 3 S. Soliman French by default
2.36.1 Preuve de programmes
Proofs of programs
24 3 2 8 3 C. Marché English upon request
2.37.1Sémantique, langages et algorithmes pour la programmation multicore
Semantics, languages and algorithms for multicore programming
24 3 2 8 3 A. Cohen English upon request
2.38.1 Algorithmique et combinatoire des graphes géométriques
Algorithms and combinatorics for geometric graphs
24 3 1 8 3 E. Colin de Verdiere French by default

Semantics of the teaching languages annotations:

  • “English upon request” means that the module will be taught in French, unless one non-French speaking student requests English
  • “French by Default” means that the module is taught in French, unless at least one non-French speaking student requests English and no French speaking students requests French
  • “English by Default” is obtained by transposing “French” and “English” in the above case.
  • “English” (resp. “French”) means that the module will be taught in English (resp. French) independently of the students attending. Most of the time, however, some of the teaching material is available in French (resp. English)

For a more detailed information on the teaching language of each module, as well as concerning the language of the exams, please look at the web page of the module.

Themes covered by the level 2 modules (this was last updated in 2013)

MPRI provides excellent coverage of the following themes in Computer Science:

COCO = Computability and Complexity,

ALGO = Algorithms,

COCA = Combinatorics and Computer Algebra,

CCSE = Cryptography, Coding, and Security,

LSPR = Logics and Semantics of Programs,

AUDE = Automated Deduction,

AUFL = Automata and Formal Languages,

SPAV = System Programming, Analysis, and Verification.

The following table roughly summarizes the main themes covered by each level 2 module.

Module COCOALGOCOCACCSELSPRAUDEAUFLSPAV
2.1 Linear logic X X
2.2 Models of programming languages: domains, categories, games X
2.3 Concurrency X X
2.4 Functional programming and type systems X X
2.5.1 Automated deduction X
2.6 Abstract interpretation: application to verification and static analysis X X
2.7.1 Foundations of proof systems X X
2.7.2 Proof assistants X
2.8 Foundations of real time systems verification X X
2.9.1 Mathematical foundations of the theory of infinite transition systems X X X
2.9.2 Algorithmic verification of programs X X X
2.10 Algorithmic aspects of combinatorics X X
2.11.1 Randomized algorithms X X
2.11.2 Randomness in complexity X X
2.12.1 Techniques in cryptography and cryptanalysis X
2.12.2 Arithmetic algorithms for cryptology X
2.13.1 Polynomial systems, computer algebra and applications X X
2.13.2 Error correcting codes and applications to cryptography X
2.14.1 Computational geometry learning X
2.15 Analysis of algorithms X X
2.16 Finite automata modelling X X
2.17.1 Foundations of network models X X
2.18.1 Distributed algorithms on networks X X
2.18.2 Distributed algorithms on shared memory X X
2.19 Computational methods for systems and synthetic biology X
2.20.1 Game theory techniques in computer science X
2.20.2 Mathematical foundations of automata theory X
2.22 Efficient algorithms in computer algebra X X X
2.23.1 Synchronous systems X X
2.24.1 Optimization X
2.26.1 Logic, descriptive complexity and database theory X X X
2.26.2 Web data management X X X
2.27.1 Computational structures and logics for natural language modelling X
2.29.1 Graph algorithms X
2.30 Cryptographic protocols: computational and symbolic proofs X X
2.31-1 Constraint satisfaction problems: algorithms and complexity X X X
2.33.1 Theory of computations X X
2.34.1 Quantum information and applications X X
2.35.1 Constraint programming X X
2.36.1 Proofs of programs X X
2.37.1 Semantics, languages and algorithms for multicore programming X X
2.38.1 Algorithms and combinatorics for geometric graphs X X
Module COCOALGOCOCACCSELSPRAUDEAUFLSPAV

The previous years

 
Universités partenaires Université Paris-Diderot
Université Paris-Saclay
ENS Cachan École polytechnique Télécom ParisTech
ENS
Établissements associés Université Pierre-et-Marie-Curie CNRS INRIA CEA